您的当前位置:首页正文

基于 PPA 的求解逆变分不等式方法

来源:筏尚旅游网
http://www.paper.edu.cn

PPA-basedmethodsformonotoneinversevariationalinequalities

Bing-ShengHea,1

ab

HenryX.Liub,2MinLiaXiao-ZhengHeb

DepartmentofMathematics,NanjingUniversity,Nanjing,210093,China.

DepartmentofCivilEngineering,UniversityofMinnesota,Minneapolis,55455,USA.

Abstract.Weconsideraclassofinversevariationalinequalities:Findavectoru∗,suchthat

F(u∗)∈Ω,

󰀆

󰀁T

v−F(u∗)u∗≥0,

∀v∈Ω.

Unliketheregularvariationalinequalities,themappingF(u),insteadofthevariableu,isrestrictedinaclosedconvexsetΩ.InversevariationalinequalitiesarisefromvarioussystemcontrolproblemswhereuisacontrolvariableandF(u)istherelevantsystemstatus.Insomeapplications,themap-pingF(u)ismonotone.Forsolvingmonotoneinversevariationalinequalities,thispaperpresentstheproximalpointalgorithm(PPA)anditsinexactversions.Finally,wepresentaPPA-basedself-adaptivemethodthatonlyneedsthefunctionvalueF(u)forgivenvariables.

KeyWords.Inversevariationalinequality,monotonemapping,proximalpointalgorithm.

1Introduction

LetΩbeaclosedconvexsetofRnandfbeamappingfromRnintoitself.Theclassicalvariationalinequality,abbreviatedbyVI(Ω,f),istodetermineavectorxinΩsuchthat

(x󰀃−x)Tf(x)≥0,

∀x󰀃∈Ω.

(1.1)

Inthispaper,however,weconsideraclassofinversevariationalinequalities:Findu∈Rn,suchthat

F(u)∈Ω,

󰀆

󰀁T

v−F(u)u≥0,

∀v∈Ω,

(1.2)

whereF(u):Rn→RnisafunctionandΩ⊂Rnisaclosedconvexset.WedenoteProblem(1.2)byIVI(Ω,F).Itisclearthat,bysettingu=f(x)andF(u)=f−1(u),IVI(Ω,F)canbetranslatedintotheclassicalvariationalinequalityVI(Ω,f).However,insomepracticalapplications,f(x)doesnotallowmeasurements,onlyF(u)isavailable.

Inversevariationalinequalities,similarwithclassicalVI(Ω,f)[5,6,7],haveawiderangeap-plicationsindifferentfields.TheprimarymotivationofourresearchonIVI(Ω,F)arisesfromthetransportationsystemoperationandcontrolpolicies.Considerasimplenetworkwhichincludesoneorigination-destinationpairconnectedbyafewroutes.Letubetheimposedroutecost(tollchargesorsubsidies)andF(u)betherelevantrouteflows.Inordertoavoidtrafficcongestionandrationally

12

ThisauthorwassupportedbyNSFCGrant10571083.Email:hebma@nju.edu.cnEmail:henryliu@umn.edu

1

http://www.paper.edu.cn

usetheroadservices,theadministrationshouldfindacontrolcostusuchthattherelevantrouteflowsF(u)stayinarange,sayΩ.TheequilibriumcanbeinterpretedasanIVI(Ω,F).

Similarapplicationsofinversevariationalinequalitiescanalsobefoundintheelectricalpowernetworkmanagement.Therearepeakandvalleyperiodsintheusageofelectricitypower.Theelectricitynetworkisendangeredifoverloadedwhenthepeakperiodsofelectricityconsumptionoccur.Ontheotherhand,whentheelectricityconsumptionreachesvalleytime,electricitycouldbewastedduetothedifficultyofstoringunusedpower.Toensurethesafetyofelectricitynetworkandtoencourageoff-peakusage,theelectricitypowercompanycouldchargedifferentunitpricesforpeaktimeusageandvalleytimeusage.Suchapricingschemecouldleadtoagoodcontrolofpowerusagewithinthereasonablerange.TheequilibriumofthiscontrolproblemisalsoanIVI(Ω,F)ofform(1.2).Assumingthattheusersbehaverationallyaccordingtotheeconomicprinciple,themappingsofIVI(Ω,F)inabovementionedexampleshavesomenon-increasingproperties.

IVI(Ω,F)belongstothegeneralvariationalinequalityGVI(Ω,F,Q)[10]:Findu∈Rn,suchthat

F(u)∈Ω,

(v−F(u))TQ(u)≥0,

∀v∈Ω.

TheexistenceresultsongeneralvariationalinequalitieshavebeeninvestigatedbyPangandYao[12].SinceIVI(Ω,F)isaspecialGVI(Ω,F,Q),itmotivatesustoexploititsstructuralpropertyandtodevelopaclassofproximal-typemethodsforsolvingIVI(Ω,F).ThroughoutthispaperweassumethatthemappingFismonotone,thesolutionsetofIVI,denotedbyS∗,isnonemptyandtheprojectiononΩissimpletocarryout.TheEuclideannormwillbedenotedby󰀑·󰀑.

2Preliminaries

Thissectionstatessomepreliminariesthatareusefulintheconvergenceanalysisofthispaper.First,theprojectionofavectorvontoaclosedconvexsetΩ,definedas

PΩ(v)=argmin{󰀑u−v󰀑|u∈Ω},

playsanimportantroleinouranalysis.Awellknownpropertyoftheprojectionmappingis

󰀆

󰀁T󰀆󰀁

v−PΩ(v)u−PΩ(v)≤0,

∀v∈Rn,u∈Ω.

(2.1)

Letβ>0,sincetheearlyworkofEaves[3],ithasbeenknownthatthevariationalinequalityproblemVI(Ω,f)isequivalenttoaprojectionequation

x=PΩ[x−βf(x)],

wherePΩ(·)denotestheorthogonalprojectionmappingontoΩ.Inotherwords,solvingVI(Ω,f)isequivalenttofindingazeropointoftheresiduefunction

e(x,β):=x−PΩ[x−βf(x)].

Similarly,theinversevariationalinequality(1.2)isequivalenttothefollowingprojectionequation

F(u)=PΩ[F(u)−βu].

2

(2.2)

http://www.paper.edu.cn

Let

r(u,β):=(1/β){F(u)−PΩ[F(u)−βu]}

denotethescaledresidueoftheprojectionequation.Thenwehave

u∈S∗⇐⇒r(u,β)=0.

Thistellsusthatsolvingtheinversevariationalinequalityisequivalenttofindingazeropointofr(u,β).Forgivenu∈Rn,themagnitude󰀑r(u,β)󰀑isdependentonβ.Thefollowingpropertiesof󰀑r(u,β)󰀑areneededinconvergenceanalysis.Forself-completeness,asimilarproofasin[15]isprovided.

˜≥β>0,wehaveLemma2.1Foranyu∈Rnandβ

˜(u,β˜)󰀑≥󰀑βr(u,β)󰀑󰀑βrand

˜)󰀑≤󰀑r(u,β)󰀑.󰀑r(u,β

(2.5)(2.4)(2.3)

˜)󰀑/󰀑r(u,β)󰀑,weneedonlytoproveβ/β˜≤t≤1.NotethatitsequivalentProof.Lett=󰀑r(u,β

expressionis

˜)(t−1)≤0.(t−β/βInthefollowingweuse

(v−PΩ(v))T(PΩ(v)−w)≥0,

∀v∈Rn,w∈Ω.

(2.7)(2.6)

˜]andv:=F(u)−βuandusingBysettingw:=PΩ[F(u)−βu

˜]=βr˜(u,β˜)−βr(u,β),PΩ[F(u)−βu]−PΩ[F(u)−βuweobtain

˜(u,β˜)−βr(u,β)}≥0.{r(u,β)−u}T{βrSimilarly,wecanget

˜)−u}T{βr(u,β)−βr˜(u,β˜)}≥0.{r(u,β

Adding(2.8)and(2.9),weget

˜)}T{βr˜(u,β˜)−βr(u,β)}≥0.{r(u,β)−r(u,βandtherefore

˜󰀑r(x,β˜)󰀑2≤(β+β˜)r(u,β)Tr(u,β˜).β󰀑r(u,β)󰀑2+β

3

(2.11)(2.10)(2.9)(2.8)

http://www.paper.edu.cn

Dividing(2.11)by󰀑r(u,β)󰀑2,weget

˜2≤(β+β˜)t.β+βt

andconsequently(2.6)ishold.Theassertionisproved.

Foru∗∈S∗andastartingpointu0,wedenoteS0(u∗):={u∈Rn|󰀑u−u∗󰀑≤󰀑u0−u∗󰀑}andgivethefollowingdefinitionsaboutF.

Definition2.1ThefunctionFissaidtobeLipschitzcontinuousonRnifthereisaconstantL>0

suchthat

󰀑F(u)−F(v)󰀑≤L󰀑u−v󰀑,

∀u,v∈Rn.

󰀁

Definition2.2ThefunctionFissaidtobemonotoneonRnif

(u−v)T(F(u)−F(v))≥0

∀u,v∈Rn;

FissaidtobeuniformlystronglymonotoneonRnif

(u−v)T(F(u)−F(v))≥τ󰀑u−v󰀑2

∀u,v∈Rn.

Somepropertiesoftheprojectionmappingareusefulintheconvergenceanalysisoftheproposedmethodsinthispaper,welisttheminthefollowinglemma.Lemma2.2LetΩbeaclosedconvexsetinRn,thenwehave

󰀑PΩ(v)−u󰀑2≤󰀑v−u󰀑2−󰀑v−PΩ(v)󰀑2,and

󰀑[v−PΩ(v)]−[w−PΩ(w)]󰀑2≤󰀑v−w󰀑2−󰀑PΩ(v)−PΩ(w)󰀑2,Proof.Usingawell-knowninequalityoftheprojectionmapping,

󰀆󰀁T󰀆󰀁v−PΩ(v)u−PΩ(v)≤0,∀v∈Rn,u∈Ω,wegetAssertion(2.12)immediately.Inaddition,itfollowsthat󰀆󰀆󰀁T

v−w)PΩ(v)−PΩ(w)≥󰀑PΩ(v)−PΩ(w)󰀑2,∀v,w∈Rn.Usingtheaboveinequality,weobtain

󰀑[v−PΩ(v)]−[w−PΩ(w)]󰀑2

󰀆󰀆󰀁

=󰀑v−w󰀑2−2v−w)TPΩ(v)−PΩ(w)+󰀑PΩ(v)−PΩ(w)󰀑2≤󰀑v−w󰀑2−󰀑PΩ(v)−PΩ(w)󰀑2

andthesecondassertionofthislemmaisproved.

Aconsequentresultof(2.13)is

󰀑[v−PΩ(v)]−[w−PΩ(w)]󰀑≤󰀑v−w󰀑,

∀v,w∈Rn,

(2.14)

󰀁

∀v,w∈Rn.

(2.13)

∀v∈Rn,u∈Ω,

(2.12)

whichwillbeoftenusedinthefollowinganalysisofthispaper.

4

http://www.paper.edu.cn

3TheproximalpointalgorithmforIVI(Ω,F)

Proximalpointalgorithm(PPA)[11,13]isanattractivemethodforsolvingmonotoneVI(Ω,f).Forgivenxk∈Ωandβk>0,PPAtakesthesolutionofsubproblem

x∈Ω,

(x󰀃−x)Tfk(x)≥0,

∀x󰀃∈Ω

asthenewiteratexk+1,where

fk(x)=(x−xk)+βkf(x).

Inotherwords,PPAsolvestheoriginalVI(Ω,f)viasolvingaseriesofsubproblemVI(Ω,fk).Itiswellknownthatthesequence{xk}generatedbyPPAforVI(Ω,f)satisfy

󰀑xk+1−x∗󰀑2≤󰀑xk−x∗󰀑2−󰀑xk−xk+1󰀑2

and

󰀑xk+1−x∗󰀑2≤󰀑xk−x∗󰀑2−󰀑e(xk+1,βk)󰀑2.

RecentdevelopmentsandinvestigationsofPPAforvariationalinequalitiescanbefoundin[1,2,14].ForIVI(Ω,F),wepresenttheproximalpointalgorithmwithagivenboundedsequence{βk}andprovethesamepropertiesasPPAforVI(Ω,f).

Method1.TheProximalPointAlgorithmforIVI(Ω,F).

Givenu0∈Rn.Fork=0,1,...,ifuk∈S∗thentakethesolutionofthefollowingproblem

Fk(u)∈Ω,

(v−Fk(u))Tu≥0,

∀v∈Ω,

(3.1)

asthenewiterateuk+1,where

Fk(u)=F(u)+βk(u−uk).

(3.2)

Remark.Astherelationshipof(1.2)and(2.2),thenewiterategeneratedby(3.1)-(3.2)satisfies

Fk(uk+1)=PΩ[Fk(uk+1)−βkuk+1].andthus

󰀂󰀃

uk+1=uk−(1/βk)F(uk+1)−PΩ[F(uk+1)−βkuk].

(3.4)(3.3)

SinceF(u)ismonotone,Fk(u)isuniformlystronglymonotone.Therefore,eachiterationofthePPAforIVI(Ω,F)istosolveauniformlystronglymonotoneinversevariationalinequalityIVI(Ω,Fk).Innumericalviewpoint,IVI(Ω,Fk)iswellconditionedincomparisonwithIVI(Ω,F).Theorem3.1Thesequence{uk}generatedbyMethod1forIVI(Ω,F)satisfies

󰀑uk+1−u∗󰀑2≤󰀑uk−u∗󰀑2−󰀑uk−uk+1󰀑2.

5

(3.5)

http://www.paper.edu.cn

Proof.Notethat(see(3.4))

βkuk+1=PΩ[F(uk+1)−βkuk]−[F(uk+1)−βkuk]andforanysolutionpointu∗(dueto(2.2))

βku∗=PΩ[F(u∗)−βku∗]−[F(u∗)−βku∗].Hencewehave

󰀑βk(uk+1−u∗)󰀑2

=󰀑{[F(uk+1)−βkuk]−PΩ[F(uk+1)−βkuk]}−{[F(u∗)−βku∗]−PΩ[F(u∗)−βku∗]}󰀑2.

Bysettingv=F(uk+1)−βkukandw=F(u∗)−βku∗andusing(2.13),weobtain

󰀑βk(uk+1−u∗)󰀑2

≤󰀑(F(uk+1)−F(u∗))−βk(uk−u∗)󰀑2−󰀑PΩ[F(uk+1)−βkuk]−PΩ[F(u∗)−βku∗]󰀑2.

SubstitutingPΩ[F(uk+1)−βkuk]=F(uk+1)+βk(uk+1−uk)(see(3.3))andPΩ[F(u∗)−βku∗]=F(u∗)inthesecondtermoftherighthandsideoftheaboveinequality,weget

󰀑βk(uk+1−u∗)󰀑2

≤󰀑(F(uk+1)−F(u∗))−βk(uk−u∗)󰀑2−󰀑(F(uk+1)−F(u∗))+βk(uk+1−uk)󰀑2=󰀑βk(uk−u∗)󰀑2−󰀑βk(uk+1−uk)󰀑2−2βk(uk+1−u∗)T(F(uk+1)−F(u∗))≤󰀑βk(uk−u∗)󰀑2−󰀑βk(uk+1−uk)󰀑2.

ThelastinequalityisduetothemonotonicityofFandtheassertionisproved.Theorem3.2Thesequence{uk}generatedbyMethod1forIVI(Ω,F)satisfies

󰀑uk+1−u∗󰀑2≤󰀑uk−u∗󰀑2−󰀑r(uk+1,βk)󰀑2.Proof.Using(3.5)weneedonlytoprove

󰀑r(uk+1,βk)󰀑≤󰀑uk−uk+1󰀑.

Itfollowsfromthedefinitionofr(uk+1,βk)and(3.3)that

󰀑βkr(uk+1,βk)󰀑=󰀑F(uk+1)−PΩ[F(uk+1)−βkuk+1]󰀑

=󰀑PΩ[F(uk+1)−βkuk]+βk(uk−uk+1)−PΩ[F(uk+1)−βkuk+1]󰀑.

Bysetting

v=F(uk+1)−βkuk+1

andw=F(uk+1)−βkuk,

(3.8)(3.7)(3.6)

󰀁

therighthandsideof(3.8)canbewrittenas

󰀑[v−PΩ(v)]−[w−PΩ(w)]󰀑

6

http://www.paper.edu.cn

anddueto(2.14)

󰀑βkr(uk+1,βk)󰀑≤󰀑v−w󰀑=󰀑βk(uk−uk+1)󰀑.Theproofiscomplete.

󰀁

(3.9)

Inequality(3.6)tellsusthatthesequence{uk}generatedbyPPAiscontainedinS0(u∗)foranyu∗∈S∗.Sinceuk+1isclosertothesolutionsetthanuk,wesayPPAisacontractionmethod.Basedon(3.6),wecanestablishtheconvergenceofthePPAforIVI(Ω,F).However,thesubproblemitselfisstillaninversevariationalinequality.Thetaskofsolvingthesubproblemsisratherexpensive.ThecostlycomputationalloadofexactPPAmotivatesustoconsiderinexactversionsofPPA[1,4,10].Intherestofthissection,wediscusshowtoproduceaninexactsolutionofthesubIVI(Ω,Fk)withsomerelativeinexactnesscriteria.

Inexactprocedure.ProducinganapproximatesolutionofIVI(Ω,Fk).Forgivenβk>0andδk>0,theapproximatesolutionu˜ksatisfies

F(˜uk)−ξk+βk(˜uk−uk)=PΩ[F(˜uk)−ξk−βkuk],where

󰀑ξk󰀑≤δk󰀑βk(uk−u˜k)󰀑.

(3.11)(3.10)

Remark.Forfixedβk>0,subIVI(Ω,Fk)(3.1)-(3.2)isauniformlystronglymonotoneinversevariationalinequality(withmodulusβk)whichhasauniquesolution,sayu∗k.Itsatisfies

∗∗

Fk(u∗k)=PΩ[Fk(uk)−βkuk].

kk∗TheexactPPAtakesuk+1=u∗kasthenewiterate.Notethatuk=u,otherwiseuisasolutionofIVI(Ω,F).Inprinciple,wecanuseaGoldstein’stypeprojectionmethod(e.g.,[9])togetanapproximatesolutionofauniformlystronglymonotoneinversevariationalinequality.Letu¯k≈u∗kbeanapproximatesolutionof(3.1)-(3.2)andthus

Fk(¯uk)≈PΩ[Fk(¯uk)−βku¯k].Notethat(3.12)canbewrittenas

F(¯uk)+βk(¯uk−uk)≈PΩ[F(¯uk)−βkuk].Forthisu¯k,bysetting

u˜k=uk−(1/βk){F(¯uk)−PΩ[F(¯uk)−βkuk]},wehave

F(¯uk)+βk(˜uk−uk)=PΩ[F(¯uk)−βkuk]

7

(3.12)

(3.13)

(3.14)

(3.15)

http://www.paper.edu.cn

andthusu˜k(≈u¯k)isalsoanapproximatesolutionofPPAsubproblem(3.1)-(3.2).Let

ξk=F(˜uk)−F(¯uk),

(3.16)

kk˜k≈u¯k≈u∗Equation(3.15)canbewritteninform(3.10)andu˜k=u∗k=u,forkifξ=0.Sinceu

anygivenδk>0,wecanaskξktobesmallsuchthatCondition(3.11)tobesatisfied.TheinexactPPAinthefollowingsectionsarebasedonu˜kandξkproducedbytheInexactProcedure.ThefollowingresultwillbeusedintheconvergenceanalysisofdifferentPPA-basedinexactmethods.

Theorem3.3Ifuk,u˜kandξksatisfyEquation(3.10)-(3.11),thenwehave

󰀑r(˜uk,βk)󰀑≤(1+δk)󰀑uk−u˜k󰀑.

Proof.Itfollowsfromthedefinitionofr(˜uk,βk)and(3.10)that

󰀑βkr(˜uk,βk)󰀑=󰀑F(˜uk)−PΩ[F(˜uk)−βku˜k]󰀑

=󰀑PΩ[F(˜uk)−ξk−βkuk]+βk(uk−u˜k)+ξk−PΩ[F(˜uk)−βku˜k]󰀑.

Notethattherighthandsideof(3.18)canbewrittenas

󰀑[v−PΩ(v)]−[w−PΩ(w)]󰀑,with

v=F(˜uk)−βku˜k

andw=F(˜uk)−ξk−βkuk.

(3.18)(3.17)

Byusing(2.14)weobtain

󰀑PΩ[F(˜uk)−ξk−βkuk]+βk(uk−u˜k)+ξk−PΩ[F(˜uk)−βku˜k]󰀑≤󰀑v−w󰀑

=󰀑βk(uk−u˜k)+ξk󰀑.

Assertion(3.17)followsfrom(3.18),(3.19)and(3.11)immediately.

󰀁

(3.19)

4AninexactPPAforIVI(Ω,F)

Theinexactproximalpointalgorithminthissectiontakessuchu˜kin(3.10)asthenewiterate.Wedescribetheprocedureasfollows.

Method2.AninexactProximalPointAlgorithmforIVI(Ω,F).

Givenu0∈Rn.Fork=0,1,...,ifuk∈S∗thentakeu˜kin(3.10)asthenewiterateuk+1.Initsinexactnesscriterion(3.11),

δk=νηk

whichsatisfies

ν∈(0,1)

and

∞󰀅k=0

2

ηk<+∞.

(4.1)

8

http://www.paper.edu.cn

Themainpropertiesofthesequence{uk}generatedbytheinexactPPAinthissectionwillbedescribedinthefollowingtheorems.

Theorem4.1Let{uk}bethesequencegeneratedbyMethod2(aninexactPPA)forIVI(Ω,F).Thenwehave

22

󰀑uk+1−u∗󰀑2≤(1+2ηk)󰀑uk−u∗󰀑2−(1−ν2−2ηk)󰀑uk−uk+1󰀑2.

(4.2)

Proof.Sinceuk+1=u˜k,itfollowsfrom(3.10)that

βkuk+1=PΩ[F(uk+1)−ξk−βkuk]−[F(uk+1)−ξk−βkuk].Sinceu∗isasolutionpoint,dueto(2.2),wehave

−βku∗=[F(u∗)−βku∗]−PΩ[F(u∗)−βku∗].Addingtheabovetwoinequalities,weobtain

βk(uk+1−u∗)={PΩ[F(uk+1)−ξk−βkuk]−[F(uk+1)−ξk−βkuk]}

−{PΩ[F(u∗)−βku∗]−[F(u∗)−βku∗]}.

(4.4)(4.3)

SimilarlyasintheproofofTheorem3.1,applyingLemma2.2totherighthandsideof(4.4),weget

󰀑βk(uk+1−u∗)󰀑2

≤󰀑(F(uk+1)−F(u∗))−ξk−βk(uk−u∗)󰀑2

−󰀑PΩ[F(uk+1)−ξk−βkuk]−PΩ[F(u∗)−βku∗]󰀑2.

SubstitutingPΩ[F(uk+1)−ξk−βkuk]=F(uk+1)−ξk−βk(uk−uk+1)(see(4.3))andPΩ[F(u∗)−βku∗]=F(u∗)inthesecondtermoftherighthandsideoftheaboveinequality,weget

󰀑βk(uk+1−u∗)󰀑2

≤󰀑(F(uk+1)−F(u∗))−ξk−βk(uk−u∗)󰀑2−󰀑(F(uk+1)−F(u∗))−ξk−βk(uk−uk+1)󰀑2=󰀑βk(uk−u∗)+ξk󰀑2−󰀑βk(uk−uk+1)+ξk󰀑2−2βk(uk+1−u∗)T(F(uk+1)−F(u∗))≤󰀑βk(uk−u∗)+ξk󰀑2−󰀑βk(uk−uk+1)+ξk󰀑2.

(4.5)

Thelastinequalityof(4.5)isduetothemonotonicityofF.ByusingCauchy-Schwarzinequalitywehave

󰀆1󰀁2

󰀑βk(uk−u∗)+ξk󰀑2≤(1+2ηk)󰀑βk(uk−u∗)󰀑2+1+2󰀑ξk󰀑2

2ηkand

󰀆1󰀁2

󰀑βk(uk−uk+1)+ξk󰀑2≥(1−2ηk)󰀑βk(uk−uk+1)󰀑2+1−2󰀑ξk󰀑2.

2ηk

Substitutingthemin(4.5)andusingtheinexactnesscriterion(4.1),weobtain

222

󰀑βk(uk+1−u∗)󰀑2≤(1+2ηk)󰀑βk(uk−u∗)󰀑2−(1−2ηk)󰀑βk(uk−uk+1)󰀑2+(1/ηk)󰀑ξk󰀑2

22

≤(1+2ηk)󰀑βk(uk−u∗)󰀑2−(1−ν2−2ηk)󰀑βk(uk−uk+1)󰀑2

(4.6)

andtheproofiscomplete.󰀁

9

http://www.paper.edu.cn

Theorem4.2Let{uk}bethesequencegeneratedbyMethod2(aninexactPPA)forIVI(Ω,F).Thenwehave

󰀑u

k+1

−u󰀑≤(1+

∗2

22ηk)󰀑uk

2)(1−ν2−2ηk

−u󰀑−󰀑r(uk+1,βk)󰀑2.2(1+νηk)

∗2

(4.7)

Proof.Accordingto(4.2)weneedonlytoprove

󰀑r(uk+1,βk)󰀑≤(1+νηk)󰀑uk−uk+1󰀑.

Sincewedirectlytakeu˜kasthenewiterate,i.e.,uk+1=u˜k,itfollowsfromTheorem3.3that

󰀑r(uk+1,βk)󰀑≤(1+δk)󰀑uk−uk+1󰀑.

Assertion(4.8)followsfrom(4.9)and(4.1)immediately.

󰀁

1−ν2

4(4.8)

(4.9)

2≤Sincelimk→∞ηk=0,withoutlossofthegenerality,wecanassumethatνηk<1andηk

forallk.Thus,theresultsinTheorem4.2canbewrittenas

󰀑u

k+1

−u󰀑≤(1+

∗2

22ηk)󰀑uk

1−ν2

−u󰀑−󰀑r(uk+1,βk)󰀑2.

8

∗2

(4.10)

󰀄k22∞Since∞k=0ηk<+∞,itfollowsthatΠk=0(1+2ηk)<+∞andthesequence{u}generatedbytheinexactPPAinthissectionisbounded.Basedon(4.10),usingthesametechniqueasin[10],wecanprovetheconvergenceoftheinexactPPAproposedinthissection.AshortcomingoftheinexactPPAinthissectionistheinexactnesscriterion(4.1).Since

󰀑ξk󰀑

≤νηk

󰀑βk(uk−uk+1)󰀑

and

limηk=0,

(4.11)

k→∞

itrequirestherelativeaccuracyhigherandhigherastheiterationindexincreases.

5ThePPA-basedprediction-correctionmethod

TheinexactPPAinthelastsectiondirectlytakesanapproximatesolutionofthePPAsubproblem,u˜kin(3.10),asthenewiterateuk+1.Theshortcomingisthatitneedsaratherrestrictiveinexactnesscriterionaspointedin(4.11).Inthissection,weconsidertorelaxtheinexactnesscriterionto

󰀑ξk󰀑≤ν󰀑βk(uk−u˜k)󰀑

and

ν∈(0,1),

whereu˜kandξkaredescribedin(3.10).However,insteadoftakingu˜kasthenewiterate,wetakeitasapredictor.Itoffersusadescentdirectionoftheunknowndistancefunction󰀑u−u∗󰀑atthepointuk.

10

http://www.paper.edu.cn

Method3.APPA-basedprediction-correctionmethod.

Givenu0∈Rn.Fork=0,1,...,ifuk∈S∗,do:Predictionstep:Takeu˜kin(3.10)asapredictor.Initsinexactnesscriterion(3.11),

δk=ν

whichsatisfies

ν∈(0,1).

(5.1)

Correctionstep:Producethenewiterateuk+1bytakingastepsizeαkalongthedirection−d(uk,βk),

uk+1=uk−αkd(uk,βk),where

d(uk,βk)=(uk−u˜k)+ξk/βk

and

(uk−u˜k)Td(uk,βk)αk=γ,

󰀑d(uk,βk)󰀑2

γ∈(0,2).

(5.4)(5.3)(5.2)

Eachiterationoftheproposedmethodconsistsoftwosteps:predictionstepandcorrectionstep.Thepredictionstepoffersanapproximatesolutionof(3.1)-(3.2)andthecorrectionstepupdatesthenewiterate.Since(3.1)-(3.2)isthesubproblemofPPA,themethodisreferredtothePPA-basedprediction-correctionmethod.Infact,underCondition(5.1),thepredictionstepoffersusadescentdirectionoftheunknowndistancefunction󰀑u−u∗󰀑atthepointuk.Thispropertywillbeprovedinthefollowingtheorem.

˜kbethepredictorgeneratedink-thiterationofMethod3.ThenwehaveTheorem5.1Letu

(uk−u∗)Td(uk,βk)≥(uk−u˜k)Td(uk,βk)where

d(uk,βk)=(uk−u˜k)+ξk/βk.UnderCondition(5.1)wehave

(uk−u˜k)Td(uk,βk)≥(1−ν)󰀑uk−u˜k󰀑2.Proof.Notethat,foranysolutionpointu∗,wehave

(βku∗)T{PΩ[F(˜uk)−ξk−βkuk]−F(u∗)}≥0.Keepinmindthat

F(˜uk)−ξk+βk(˜uk−uk)=PΩ[F(˜uk)−ξk−βkuk].

11

(5.9)(5.8)(5.7)(5.6)(5.5)

http://www.paper.edu.cn

SinceF(u∗)∈Ω,bysettingv=F(˜uk)−ξk−βkukandu=F(u∗)in(2.1),wehave

{[F(˜uk)−ξk−βkuk]−PΩ[F(˜uk)−ξk−βkuk]}T{PΩ[F(˜uk)−ξk−βkuk]−F(u∗)}≥0.Itfollowsfrom(5.9)that

(−βku˜k)T{PΩ[F(˜uk)−ξk−βkuk]−F(u∗)}≥0.Adding(5.8)and(5.10)weobtain

(u∗−u˜k)T{PΩ[F(˜uk)−ξk−βkuk]−F(u∗)}≥0.DuetothemonotonicityofF,wehave

(u∗−u˜k)T{F(u∗)−F(˜uk)}≥0.Adding(5.11)and(5.12)weget

(˜uk−u∗)T{F(˜uk)−PΩ[F(˜uk)−ξk−βkuk]}≥0.

SincePΩ[F(˜uk)−ξk−βkuk]=F(˜uk)−ξk+β(˜uk−uk)(see(5.9)),itfollowsthat

(˜uk−u∗)T{βk(uk−u˜k)+ξk}≥0andthusbythedefinitionofd(uk,βk),wehave

(uk−u∗)Td(uk,βk)≥(uk−u˜k)Td(uk,βk).

Therestassertion(5.7)followsfrom(3.11)and(5.1)immediately.

󰀁

(5.13)(5.12)(5.11)(5.10)

Theorem5.1tellsusthat−d(uk,βk)isadescentdirectionoftheunknowndistancefunction󰀑u−u∗󰀑atthepointuk.Alongthisdirection,wewanttofindastep-lengthandtodeterminethenewiteratethatclosertothesolutionset.Letusdenote

uk+1(α)=uk−αd(uk,βk)

asthestepsizedependentnewiterateandset

θk(α)=󰀑uk−u∗󰀑2−󰀑uk+1(α)−u∗󰀑2.

θk(α)canbeviewedasaprofitfunctionink-thiteration.Bydenoting

qk(α)=2α(uk−u˜k)Td(uk,βk)−α2󰀑d(uk,βk)󰀑2,andusing(5.5),wehave

θk(α)=󰀑uk−u∗󰀑2−󰀑uk−u∗−αd(uk,βk)󰀑2

≥2α(uk−u˜k)Td(uk,βk)−α2󰀑d(uk,βk)󰀑2=qk(α),

12

(5.16)(5.15)(5.14)

http://www.paper.edu.cn

andthusgetalow-boundofθk(α).Notethatqk(α)isaquadraticfunctionthatreachesitsmaximumat

∗αk

(uk−u˜k)Td(uk,βk)=.

󰀑d(uk,βk)󰀑2(5.17)

Inaddition,foranyuk∈S∗,since󰀑uk−u˜k󰀑2>󰀑ξk/βk󰀑2(see(5.1)),(uk−u˜k)Td(uk,βk)=󰀑uk−u˜k󰀑2+(uk−u˜k)Tξk/βk

11k

󰀑u−u˜k󰀑2+(uk−u˜k)Tξk/βk+󰀑ξk/βk󰀑2>221=󰀑d(uk,βk)󰀑2,

2

wehave

1∗

αk=(uk−u˜k)Td(uk,βk)/󰀑d(uk,βk)󰀑2>.

2

Thefollowingtheoremgivesthemainresultfortheproposedprediction-correctionmethod.

∗givenby(5.17).Forthenewiterateuk+1Theorem5.2Letd(uk,βk)begivenby(5.3)andαk

generatedby

(5.18)

uk+1=uk−αkd(uk,βk)with

αk=γαk

(5.19)

andγ∈(0,2)(5.20)

wehave

󰀑uk+1−u∗󰀑2≤󰀑uk−u∗󰀑2−

γ(2−γ)(1−ν)k

󰀑u−u˜k󰀑2,

2

∀u∗∈S∗.

(5.21)

Proof.Notethatαkgivenin(5.20)isjustthesameasin(5.4)inthecorrectionstep.Itfollowsfrom(5.14)and(5.16)that

󰀑uk−u∗󰀑2−󰀑uk+1−u∗󰀑2≥qk(αk).Using(5.15),(5.18)and(5.7)weobtain

2

qk(αk)=2αk(uk−u˜k)Td(uk,βk)−αk󰀑d(uk,βk)󰀑2

∗∗k

=2αkγ(uk−u˜k)Td(uk,βk)−γ2αk(u−u˜k)Td(uk,βk)

1≥γ(2−γ)(1−ν)󰀑uk−u˜k󰀑2

2

andtheassertionisproved.󰀁

(5.22)

Theorem5.3Thesequence{uk}generatedbyMethod3(APPA-basedprediction-correctionmethod)forIVI(Ω,F)satisfies

󰀑uk+1−u∗󰀑2≤󰀑uk−u∗󰀑2−

γ(2−γ)(1−ν)

󰀑r(˜uk,βk)󰀑2.22(1+ν)

13

(5.23)

http://www.paper.edu.cn

Proof.Accordingto(5.21)weneedonlytoprove

󰀑r(˜uk,βk)󰀑≤(1+ν)󰀑uk−u˜k󰀑.

Assertion(5.24)followsfrom(3.17)and(5.1)immediately.

󰀁

(5.24)

Forgivenνandγ,theresultsinTheorem5.3canbewrittenas󰀑uk+1−u∗󰀑2≤󰀑uk−u∗󰀑2−c0󰀑r(˜uk,βk)󰀑2,

c0>0.

(5.25)

Inequality(5.25)tellsusthatthesequence{uk}generatedbyMethod3iscontainedinS0(u∗)foranyu∗∈S∗anduk+1isclosertothesolutionsetthanuk.ThePPA-basedprediction-correctionmethodisalsoacontractionmethod.Basedon(5.25),wecandeducetheconvergenceofthemethod.

6Self-adaptivePPA-basedprediction-correctionmethod

Indeed,theinexactnesscriterion(5.1)ismuchmorerelaxedthan(4.1).Sometimeswecangettheapproximatesolutionof(3.10)whichsatisfiesCondition(5.1)directlyviachoosingasuitablelargeβk>0.AssumethatFisLipschitzcontinuouswithconstantL(seeDefinition2.1)andβk≥L/ν.Wetake

u˜k=uk−(1/βk){F(uk)−PΩ[F(uk)−βkuk]}asthepredictorandthus

F(uk)+βk(˜uk−uk)=PΩ[F(uk)−βkuk].Setting

ξk=F(˜uk)−F(uk),Equation(6.2)canberewrittenas

F(˜uk)−ξk+βk(˜uk−uk)=PΩ[F(˜uk)−ξk−βkuk],thisisjustthesameformulaas(3.10).Sinceβk≥L/ν,wehave

󰀑ξk󰀑=󰀑F(˜uk)−F(uk)󰀑≤L󰀑uk−u˜k󰀑≤ν󰀑βk(uk−u˜k)󰀑.

(6.5)(6.4)(6.3)(6.2)(6.1)

andtheinexactnesscriterion(5.1)issatisfied.Inprinciple,wecanuseArmijo’sliketechniquetofindasuitableβk.Foratrialβk>0,wegetatrialu˜kvia(6.1)andcalculate

󰀑F(uk)−F(˜uk)󰀑

τk=.

󰀑βk(uk−u˜k)󰀑

(6.6)

Ifτk≤ν,thistrialu˜kisacceptedasthepredictor.Otherwise,weenlargeβkbyafactorandrepeat

theprocess.Thenewiterateuk+1isupdatedbythesamecorrectioninthelastsection.

14

http://www.paper.edu.cn

Method4.ASelfadaptivePPA-basedprediction-correctionmethod.Givenu0∈Rnandatrialβ0>0.Fork=0,1,...,ifuk∈S∗,do:Predictionstep.Findanacceptablepredictoru˜k:1)u˜k=uk−(1/βk){F(uk)−PΩ[F(uk)−βkuk]};󰀑F(uk)−F(˜uk)󰀑

.τk:=

󰀑βk(uk−u˜k)󰀑2)Ifτk>ν,thenenlargeβkby

βk:=βk∗1.5,

andgoto1).

Correctionstep:Producethenewiterateuk+1by

uk+1=uk−αkd(uk,βk),where

d(uk,βk)=(uk−u˜k)+[F(˜uk)−F(uk)]/βk

and

(uk−u˜k)Td(uk,βk)

αk=γ,

󰀑d(uk,βk)󰀑2γ∈(0,2).

Sincewefindthesuitableβkbysomeself-adaptivetechnique,Method4isreferredtoSelf-adaptivePPA-basedprediction-correctionmethod.ThemethodissimilarasthemethodforVI(Ω,f)[8]butinaconvertform.Thegeneratedsequence{uk}stillsatisfies

󰀑uk+1−u∗󰀑2≤󰀑uk−u∗󰀑2−c0󰀑r(˜uk,βk)󰀑2,

c0>0.

(6.7)

UndertheassumptionthatFisLipschitzcontinuous,theacceptedsequence{βk}isup-bounded.LetβM=sup∞k=0βk,itfollowsfromLemma2.1that

󰀑uk+1−u∗󰀑2≤󰀑uk−u∗󰀑2−c0󰀑r(˜uk,βM)󰀑2,

c0>0.

Theconvergencecanbededucedfromtheaboveinequality.

Remark.Inthepredictionstep,insteadoftheenlargementtechnique2),wecanalsoenlargeβkbyβk:=βk∗τk∗1.2.Thesequence{βk}generatedbytheself-adaptivePPA-basedprediction-correctionmethodisnon-decreasing.However,ifβkistoolarge(andthusτkwillbesmall),itwillleadslowconvergence.Therefore,weallowthetrialβklimitedtimestobereducedbyβk+1=βk∗τk/0.9whenτk≤0.5.

7Conclusions

Similarwiththeclassicalvariationalinequalities,theinversevariationalinequalitieshaveawiderangeapplicationsindifferentfields.FormonotoneIVI(Ω,F),wepresentedaclassofproximal

15

http://www.paper.edu.cn

pointalgorithms,exact,inexactandself-adaptivemethods.Undercertainregularconditions,theconvergencespeedofallpresentedmethodsislinear.Forgivenuk,thesmallertheproximalparameterβkis,themoreexpensiveisthecomputationalloadforsolvingthesubproblemtosatisfy(3.10)-(3.11).Inordertoreducethecomputationalcostineachiteration,theself-adaptivePPA-basedprediction-correctionmethodisrecommended.

References

[1]A.Auslender,M.TeboulleandS.Ben-Tiba,Alogarithmic-quadraticproximalmethodfor

variationalinequalities,Comput.Optim.Appl.,12(1999),pp.31-40.[2]R.S.BurachikandA.N.Iusem,Ageneralizedproximalpointalogrithmforthevariational

inequalityprobleminaHilbertspace,SIAMJ.Optim.,8(1998),pp.197-216.[3]B.C.Eaves,Onthebasictheoremofcomplementarity,Math.Progr.,1(1971),pp.68–75.[4]J.Eckstein,ApproximateiterationsinBregman-function-basedproximalalgorithms,Math.

Progr.,83(1998),pp.113-123.[5]F.FacchineiandJ.S.Pang,Finite-dimensionalvariationalinequalitiesandcomplementarity

problems.SpringerSeriesinOperationsResearch,Spinger-Verlag,2003.[6]M.C.FerrisandJ.S.Pang,Engineeringandeconomicapplicationsofcomplementarityproblems,

SIAMRev.,39(1997),pp.669-713.[7]P.T.HarkerandJ.S.Pang,Finite-dimensionalvariationalinequalityandnonlinearcomplemen-tarityproblems:ASurveyoftheory,algorithmsandapplications,Math.Progr.,48(1990),pp.161–220.[8]B.S.He,Aclassofprojectionandcontractionmethodsformonotonevariationalinequalities,

Appl.Math.andOptimi.,35(1997),pp.69–76.[9]B.S.He,AGoldstein’stypeprojectionmethodforaclassofvariantvariationalinequalities,J.

Comput.Math.17(1999),pp.425-434.[10]B.S.He,Inexactimplicitmethodsformonotonegeneralvariationalinequalities,Mathematical

Programming,86(1999),pp.199-217.[11]B.Martinet,Regularizationd’inequationsvariationellesparapproximationssucessives,Revue

Francaised’InformatiqueetdeRechercheOp´erationelle,4(1970),pp.154-159.[12]J.SPangandJ.C.Yao,Onageneralizationofanormalmapandequation,SIAMJ.ControlandOptimization,33(1995),pp.168-184.[13]R.T.Rockafellar,Monotoneoperatorsandtheproximalpointalgorithm,SIAMJ.Con.Optim.,

14(1976),pp.877-898.[14]M.Teboulle,Convergenceofproximal-likealgorithms,SIAMJ.Optim.,7(1997),pp.1069-1083.[15]T.ZhuandZ.G.Yu,Asimpleproofforsomeimportantpropertiesoftheprojectionmapping,

MathematicalInequalities&Applications,7(2004),pp.453-456.

16

因篇幅问题不能全部显示,请点此查看更多更全内容