ContentslistsavailableatSciVerseScienceDirect
EngineeringGeology
journalhomepage:www.elsevier.com/locate/enggeo
Evaluationofsimplifiedmethodsforpredictingearthquake-inducedslopedisplacementsinearthdamsandembankments
ChristopherL.Meehana,⁎,FarshidVahedifardbabUniversityofDelaware,Dept.ofCivilandEnvironmentalEngineering,301DuPontHall,Newark,DE19716,USA
MississippiStateUniversity,Dept.ofCivilandEnvironmentalEngineering,235HWalkerHall,MississippiState,MS39762,USA
articleinfoabstract
Thispaperprovidesareviewandcomparisonofexistingsimplifieddisplacement-basedslidingblockmodels.Analyseswereperformedtoevaluatetherelativeaccuracyoffifteenofthesesimplifiedmodelsforpredictingearthquake-induceddisplacements.Toaccomplishthistask,thepredictivecapabilityofthemodelswasassessedbycomparingmodelpredictionswiththeactualdisplacementsthatwereobservedafterearthquakeshakingin122casehistoriesofearthdamsandembankments.Theresultsindicatethatthemodelpredictionsofdisplace-mentwerelessthantheobserveddisplacementforalargemajorityofthecasehistoriesthatwereexamined.Thedifferencebetweentheobservedandpredicteddisplacementswasrelativelylargeforasignificantpercentageofthecases,foreachmodelthatwasexamined.Theshapesandpositionsofthemodels'relativeerrorcumulativedistributionfunctionsdidnotchangesignificantlyifthecasehistorieswerefilteredtoincludeonlythosewithintermediatelevelsofobserveddisplacement(i.e.,0.01mbobserveddisplacementb1m),whichindicatesthatthesimplifiedmodelsmayexhibitthesamebehaviorforcasesofsmalland/orlargedisplacementsastheydoforcasesintheintermediaterange,providedthatapercentage-basedapproachsuchasrelativeerrorisusedtocomparetheresultsfromdifferentmodels.
©2012ElsevierB.V.Allrightsreserved.
Articlehistory:
Received7May2012
Receivedinrevisedform23September2012Accepted13October2012
Availableonline8November2012Keywords:Dams
EmbankmentsEarthquakesDisplacementSlopestabilitySeismichazard
1.Introduction
Earthquakesposeasignificantthreattoawiderangeofgeotechnicalprojects,includingthosethatinvolvenaturalslopes,earthdams,solid-wastelandfills,retainingwalls,tunnels,orfoundations.Tomini-mizeearthquake-inducedlossesinthesestructures,twoessentialques-tionshavetobeconsidered:first,willearthquakeshakingsignificantlydecreasethestrengthofanymaterialinthestructureoritsfoundation(e.g.,liquefaction,strain-softening)?Ifasignificantlossofsoilstrengthoccurs,thereisastrongpossibilityofcatastrophicstructuralfailure,eitherduringtheearthquakeitselforaftercompletionofearthquakeshaking(Bray,2007).Ifsignificantstrengthlossdoesnotoccur,thesecondquestionthatfollowsis:willanearthquakeimposesignificantpermanentdeformationstoastructuresuchthatitspost-earthquakeperformanceisendangered(Bray,2007)?
Forthosecaseswheresignificantstrengthlossdoesnotoccur,avarietyoftechniqueshavehistoricallybeenusedtoevaluateseis-micslopestability.Thesetechniquestypicallyfallintooneofthefollowingcategories,inorderfromlowtohighcomplexity:force
⁎Correspondingauthorat:UniversityofDelaware,Dept.ofCivilandEnvironmentalEngineering,301DuPontHall,Newark,DE19716,USA.Tel.:+13028316074;fax:+13028313640.
E-mailaddresses:cmeehan@udel.edu(C.L.Meehan),farshid@cee.msstate.edu(F.Vahedifard).
0013-7952/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved.http://dx.doi.org/10.1016/j.enggeo.2012.10.016
basedpseudo-staticmethods,displacement-basedmethods(some-timesreferredasNewmark-typeorslidingblockmethods),andstress-deformationanalysesthroughnumericalmethods,suchasfiniteelementordiscreteelementmethods(KramerandSmith,1997).Asanintermediatelycomplicatedandaccurateapproach,displacement-basedmethodsdevelopedbasedonslidingblocktheoryproduceareliableindexofslopeperformanceunderseismicloadingthroughtheirpredictivecalculationofpermanentearthquake-induceddisplacements(e.g.,KramerandSmith,1997).
SinceNewmark's(1965)introductionoftheslidingblockmethod,numerousdisplacement-basedanalyticalmethodshavebeenpro-posedtoimproveupontheaccuracyofNewmark'soriginalmethod(e.g.,MakdisiandSeed,1978;KramerandSmith,1997;RathjeandBray,2000),tosimplifyitsuse(e.g.,FranklinandChang,1977;AmbraseysandMenu,1988;Jibson,2007;HsiehandLee,2011;RathjeandAntonakos,2011),ortoapplythegeneralconceptofthemodeltoapplicationsbeyondthoseoriginallyproposedbyNewmark(e.g.,RichardsandElms,1979;LingandCheng,1997;Lingetal.,1997).MorerecentstudieshavealsobeenperformedtocharacterizeuncertaintiesassociatedwithNewmark-typemodels(e.g.,StrenkandWartman,2011).Thenumberofdisplacement-basedmodelsthathavebeenproposedisquitesignificant,anditisconsequentlydiffi-cultforpracticingengineerstoascertainwhichmodelshouldbeselectedforapplicationtoagivenproblem.Thispaperwillfocusondesignmethodsthathavebeendevelopedtosimplifytheuseofslidingblockmodels,whichwillhereafterbereferredtoassimplified
C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193181
slidingblockmethods.Itshouldbeemphasizedthat,insomecases,theapplicationofsimplifiedslidingblockmodelsisnottrulya“simple”task,asalargenumberofrelativelysophisticatedinputparametersaresometimesrequired.
Thispaperseekstoperformtwotasks:(1)toprovideathoroughreviewofexistingliteraturethatsummarizesandorganizesalargenumberofsimplifiedslidingblockmodels,makingtheseempiricalequationsmoreaccessibleforusebypracticingengineers,and(2)toevaluatetherelativeaccuracyofanumberofexistingsimplifiedslidingblockmodelsforpredictingearthquake-induceddisplacements.Toac-complishthesecondtask,thepredictivecapabilityoffifteensimplifiedslidingblockmodelsisassessedbycomparingmodelpredictionswiththeactualdisplacementsthatwereobservedafterearthquakeshakingin122casehistoriesofearthdamsandembankments.2.Developmentandevolutionofslidingblockmodels
Newmark(1965)isoftencreditedwiththefirstdevelopmentofadisplacement-based“slidingblock”methodforthedynamicanalysisofearthdamsandembankments.AsnotedbyMarcuson(1995),itisprobablyalsoappropriatetocitetheearlydevelopmentofdisplacement-basedapproachesinseismicslopestabilitytocontribu-tionsmadebyWhitmanandTaylor(e.g.,Taylor,1953).EarlypioneersinthisareaalsoincludeGoodmanandSeed(1965),whousedasim-ilardisplacement-basedmethodinsteadoftraditionalpseudo-staticanalysistoevaluateslopeperformanceunderearthquakeshaking.
Newmark(1965)assumedthatthedominantmechanismforearthquake-induceddisplacementindamsinvolvedslidingshearalongawell-definedfailuresurface.Heproposedthatthedynamicbehaviorofaslidingmasscouldbesimulatedbymodelingthemassasarigidblockslidingonaninclinedbase.Usingthisapproach,athresholdaccelerationisdefinedthatcorrespondstotheinertialforcethatmustbeappliedtoovercometheshearresistancebetweentheblockandthebase.Incurrentpractice,thisaccelerationiscommonlyreferredtoasthe“critical”or“yield”acceleration,anditisusuallyassumedtobetheinertialaccelerationthatyieldsafactorofsafetyofoneinapseudo-staticanalysisoftheslope.UsingNewmark'sapproach,slidingwillcommencewhentheshaking-inducedaccelerationexceedsthecriticalacceleration.Thecumulativeseismicdisplacementscanbecalculatedbyintegrationofeverywheretherelativevelocityoftheslidingblockisgreaterthanzero.
Inpractice,valuesofcriticalaccelerationaretypicallyestimatedusingatrialanderrorapproachinconjunctionwithconventionallimit-equilibriumslopestabilitymethods.Explicitequationshavealsobeendevelopedtodirectlyestimatethecriticalaccelerationforrelativelyuniformslopesandsimplefailuremechanisms(e.g.,Brayetal.,1998;Jibsonetal.,2000)ornon-circularfailuremechanisms(e.g.,Sarma,1973)asafunctionofcriticalinputparameterssuchasslopegeometry,thecohesionandfrictionangleofthesoil,andtheunitweightofthesoil.Forcertainapplicationssuchasrigorousprobabilisticanalysesorlandslidehazardmapping,relativelysimplefunctionalformsthatcanbeusedtodeterminecriticalaccelerationcansignificantlydecreasetherequiredcomputationaleffort,andmaybeappropriateforusegiventherelativeuncertaintyofmodelinputparameters.
Newmark'sslidingblockmodelwasdevelopedandiscommonlyimplementedfollowinganumberofsimplifyingassumptions.Asignificantamountofresearchhasbeenconductedtoexaminethesensitivityofpredictedseismicdisplacementstotheseassumptions,andinmanycases,newmodelsormodificationstoNewmark'soriginalmodelhavebeenproposedtoimprovetheaccuracyofthepredicteddisplacements.ThelimitingassumptionsassociatedwithNewmark'soriginalmodelandsomeofthepertinentstudiesthathavebeenperformedbyotherstostudytheeffectsoftheseassump-tionsareasfollows:(a)thedynamicresponseofthefailuremassdoesnotaffecttheearthquake-induceddisplacement(e.g.,Makdisiand
Seed,1978;LinandWhitman,1983;Hynes-GriffinandFranklin,1984;KramerandSmith,1997;BrayandRathje,1998;RathjeandBray,2000;Wartmanetal.,2003;RathjeandAntonakos,2011);(b)thepotentialfailuremassoftheslopefailsfollowingarigid-perfectlyplastictypeoffailuremechanism(e.g.,KutterandJames,1989;Yanetal.,1996;Mendezetal.,2009);(c)thecriticalaccelera-tionremainsconstantduringshaking,correspondingtonoincreaseorlossofstrengthduetoearthquakeshaking(e.g.,Houstonetal.,1987;KutterandJames,1989;Matasovicetal.,1997);(d)permanentdisplacementoccursjustinthedownwarddirection,and“upslopesliding”doesnotoccur(e.g.,Yan,1991;Matasovicetal.,1998);(e)theverticalcomponentofthegroundmotiondoesnotaffecttheearthquake-induceddisplacement(e.g.,Yanetal.,1996;LingandLeshchinsky,1998;KramerandLindwall,2004;Sawickietal.,2007);(f)thedisplacementsaccumulatealongasingle,welldefinedfailuresurface(e.g.,KutterandJames,1989;Nguyenetal.,2005;WartmanandStrenk,2006);(g)thesoilshearratedoesn'tinfluencethepermanentdisplacementthatoccurs(e.g.,LemosandCoelho,1991;Tika-Vassilikosetal.,1993);and(h)theeffectofporewaterpressureisignored(e.g.,Sarma,1975;KutterandJames,1989;Meehanetal.,2008).
Inadditiontothemodificationsproposedabove,othershavesuggestedextendingtheuseofNewmark'smethodtoearthquakeengineeringapplicationsbeyondearthdamsandembankments.Insomecases,itisnecessarytomodifytheformulationortheframe-workofthemodelinorderforthisextensiontobereasonable.Someofthemorecommonlyencounteredapplicationsareasfollows:conventionalgravityretainingwalls(e.g.,RichardsandElms,1979;WhitmanandLiao,1985),wasteslopesandlandfills(e.g.,KramerandSmith,1997;Matasovicetal.,1997;BrayandRathje,1998),geosynthetic-reinforcedslopesandmechanicallystabilizedearthwalls(e.g.,Lingetal.,1997;PaulsenandKramer,2004;HuangandWu,2006),anchor-reinforcedslopes(e.g.,Trandafiretal.,2009);rockslopes(e.g.,LingandCheng,1997);andearthquake-triggeredlandslidesandhazardmapping(e.g.,WilsonandKeefer,1983;Jibsonetal.,2000;MilesandKeefer,2000;SaygiliandRathje,2009).3.Simplifiedslidingblockmethods
Inordertopredictearthquake-induceddisplacementsusingNewmark'smethod,itisnecessarytohavebothaninputaccelerationtimeseriesthatcorrespondstotheearthquakegroundmotion,andacriticalaccelerationwhichisrepresentativeofthedynamicshearre-sistanceoftheslope.Asdiscussedintheprevioussection,numerousotheranalyticalmethodshavebeenproposedusingthisframework,manyofwhichalsorequiredeterminationofasitespecificaccelera-tiontimehistoryforinputintotheanalysis.Thedeterminationofasitespecificaccelerationtimehistoryiscommonlyperformedusingaselectionprocessthatlooksforsitesthathavebeenshakenbyanearthquakeofsimilarmagnitude,thatarelocatedatasimilardistancefromtheearthquakesource,andthathavesimilargroundconditions.Insomecases,anumberofaccelerationtimehistoriesareusedinconjunctionwithNewmark'smethodforagivensite,andpostulatedaccelerationrecordsarescaledtoachievethedesiredlevelofshaking.
Theselectionofsitespecificgroundmotionsandappropriatescalingfactorsisarathercomplicatedprocessthattypicallyinvolvesacertainlevelofexpertiseandjudgment(e.g.,Watson-LampreyandAbrahamson,2006).Asaresult,anumberofsimplifiedslidingblockmethodshavebeenproposedthatrequireonlycharacteristicgroundmotioninputparameterssuchasthepeakgroundacceleration(amax),peakgroundvelocity(vmax),earthquakemomentmagnitude(M),Ariasintensity(Ia),etc.intheplaceofaccelerationtimehisto-ries.Inordertodevelopthesemethods,researcherstypicallyhaveperformedanalyticalslidingblockanalysesusingarangeofcriticalaccelerationvaluesincombinationwithadatabaseofgroundmotions.Earthquake-induceddisplacementsarepredictedforeach
182C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193
criticalaccelerationincombinationwitheachgroundmotioninthedatabase,andtheresultingdisplacementsareplottedversusthecharacteristicgroundmotionparametersofinterest(e.g.,seismicdisplacement(D)vs.criticalaccelerationratio(ac/amax)isacommonformofdatapresentation).Regressionanalysiscanthenbeusedtodeveloparelationshipbetweenoneormoreofthecharacteristicgroundmotioninputparametersandtheresultingearthquake-induceddisplacement.
Alargenumberofsimplifiedslidingblockmethodshavebeenproposedbyothersforapplicationtoavarietyofgeotechnicalearth-quakeengineeringproblems.AsummaryofcommonlyreferencedmethodsisprovidedinTable1.Thecriticalelementsofeachmodelthatareshownineachofthecolumnsinthistablearediscussedinmoredetail,asfollows.3.1.Functionalform
Thiscolumnpresentsthefunctionalformofthesimplifiedslidingblockmethodthatwasprovidedbytheoriginalauthors;thisfunctionalformistheproductoftheregressionanalysesthatwereperformedforthecharacteristicgroundmotionparametersofinterest.Inanumberofthecases(Eqs.1–4),theoriginalauthorsdidnotpresentanequationfortheirsimplifiedmethodintheformthatisprovidedhere,insteadpresentingtheirresultssothatachart-basedsolutionapproachcouldbefollowed.Forthesemodels,theequationsthatarepresentedinTable1aretheresultsofregressionanalysesperformedbyCaiandBathurst(1996)upontheoriginalauthors'chart-basedsolutions.Usingasimilarapproach,thefunctionalformspresentedfortheHynes-GriffinandFranklin(1984)models(Eqs.7and8)weredeter-minedbytheauthorsofthismanuscriptusingregressionanalyses.3.2.Value
Whenusingagivensimplifiedmodel,itiscriticaltounderstandtheintrinsicnatureofthedisplacementvaluethatispredicted.Typically,theregressionanalysisperformedbytheoriginalauthorswascalibratedtoprovideeithera“mean”oran“upperbound”predictionofearthquake-induceddisplacement.MakdisiandSeed(1978)providearangeofdisplacementpredictions,andconsequent-lythechartprovidedbytheoriginalauthorsneedstobeusedtodetermineeithera“mean”(mid-rangevalue)or“upperbound”(topoftherangevalue)ofearthquake-induceddisplacement.
Inordertoconsidertherelativelyunpredictablenatureofstronggroundmotionsandtheuncertaintiesassociatedwithpredictingseismicdisplacementsusingslidingblockmodels,anumberofstatis-ticalandprobabilisticapproacheshavebeenusedtoquantifytheuncertaintyofthedisplacementspredictedusingtheslidingblockmodelequations(e.g.,LinandWhitman,1986;AmbraseysandMenu,1988;Yegianetal.,1991;BrayandTravasarou,2007;RathjeandSaygili,2008;RathjeandSaygili,2011).Ingeneral,thesemethodsareformulatedtoprovidetheprobabilityofexceedanceofagivenseismicdisplacement.Theyareappropriateforprobabilisticseismichazardanalysis.Ingeneral,forthosemodelswhichweredevelopedinaprobabilisticframework,the“median”valuepredictionequationsthatarepresentedinTable1aretheresultofprobabilisticpredictionsofdisplacementwitha50%probabilityofexceedance(e.g.,AmbraseysandMenu,1988;Yegianetal.,1991).3.3.Designatedapplication(s)
Asnotedpreviously,anumberofmodificationshavebeenmadetoNewmark'sanalyticalmethodtoextenditsusetoearthquakeengi-neeringapplicationsbeyondearthdamsandembankments.Inasimilarfashion,simplifiedslidingblockmethodshavealsobeendevelopedorcalibratedforusewithavarietyofearthquakeengineeringapplications.
Thiscolumnprovidestheapplicationforwhichthesimplifiedslidingblockmodelwassuggestedand/orcalibratedforbytheoriginalauthors.3.4.Model
Eachsimplifiedmodelwasdevelopedbaseduponpredictionsofdisplacementthatweremadeusinganunderlyinganalyticalslidingblockmodel.Awidevarietyofanalyticalmodelshavebeenusedtodevelopthesimplifiedmodels,eachwithitsowninherentsetofassumptions.Typically,themostsignificantdifferencebetweentheunderlyinganalyticalmodelsistheassumptionsthattheymakewithrespecttothedynamicresponseoftheslidingmass.Theunderlyinganalyticalmodelscanbebroadlyclassifiedaseither“rigid”(e.g.,Newmark,1965),“decoupled”(e.g.,MakdisiandSeed,1978),or“coupled”(e.g.,KramerandSmith,1997;RathjeandBray,2000).Itisimportanttounderstandthedifferencesintheunderlyinganalyticalmodelswheninterpretingtheresultsfromvarioussimpli-fiedmodels,hencetheinclusionofthiscolumninthetable.3.5.Numberofrecords
Sincesimplifiedmodelsaredevelopedfromregressionanalysis,thenumberofaccelerationtimehistoriesthatareusedintheregres-sionmayaffectthequalityofthemodelprediction.Morerecentsim-plifiedmodelsusemoretimehistoriesforregressionandmodeldevelopmentthansomeoftheearlysimplifiedmodels,andmaycon-sequentlyyieldmorereliablepredictionsofearthquake-induceddisplacement.
4.Casehistoryanalysis
Inordertoassessthepredictivecapabilitiesofanumberofthesimplifiedmodelsdescribedintheprevioussection,itisusefultocomparepredictionsofearthquake-induceddisplacementwiththeactualvaluesthatwereobservedduringaseriesofseismicevents.Adatabaseof122casehistoriesdescribingtheperformanceofearthdamsandembankmentsduringpastearthquakesispresentedindetailinSinghetal.(2007).Thiscasehistorydatabasewascompiledbaseduponanextensiveliteraturereview,andwasusedinthisstudytoevaluatetheperformanceofthesimplifiedmodels.ThecompletelistofcasehistoriesalongwiththepertinentparametersforeachcasehistorycanbefoundinVahedifard(2011).
Distributionsofpertinentearthquakegroundmotionparameters,siteandslopecharacteristicsofinterest,andtheassociatedearthquake-inducedslopedisplacementsintheSinghetal.(2007)databaseareshownareFig.1.Forthesehistograms,datafallingatthebreakbetweenbinsisassignedtothelowerbin,i.e.,aMagnitude8.0earthquakeisassignedtothe“7.5–8.0”binratherthanthe“8.0–8.5”bin.Forbrevity,itisnotpossibletoincludethesourceinformationorindividualdetailsofeachcasehistoryhere;interestedreadersarereferredtoSinghetal.(2007)formoredetailedcasehistoryinformation.
AnumberofthedatabaseparametersshowninFig.1weretakendirectlyfromSinghetal.(2007).Thetechniquesthattheyusedtodeterminethesedatabaseparametersareasfollows.
4.1.Earthquakemomentmagnitude(M),heightofstructure(H),andepicentraldistance(Distance)
Takenfromtheoriginalcasehistoryreference,whichisprovidedinSinghetal.(2007).NotethatDistanceinformationforoneofthecasehistoriesisnotavailableintheSinghetal.(2007)database;consequently,thereareonly121valuesintheDistanceandvmaxdistributions,whichmeansthatthiscasehistorycouldnotbeusedforallofthesimplifiedmodelsthatwereexamined.
C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193
Table1Summaryofsimplifiedslidingblockmodels.Eq.ModelFunctionalformv2ac−1maxD¼3amaxamaxv2ac−2maxD¼0:5amaxamaxv2ac−2ac−0:49maxD¼9:2exp−5:87amaxamaxamax !Daclog¼0:85−3:91amaxCamaxT2pv2acac−0:38maxD¼35exp−6:91amaxamaxamaxDac¼f[chart-basedmethod]amaxTDamaxv2ac−4D¼0:087maxamaxamaxac4ac3þ0:193−logðDðcmÞÞ¼0:078amaxamax2acac0:285−1:847þ0:804amaxamaxac4ac3logðDðcmÞÞ¼−0:116−0:702−aamax2maxacac1:733−2:854−0:287amaxamaxWhitmanandLiao(1985)D¼37v2acmaxexp−9:4amaxamax\"10AmbraseysandMenu(1988)logðDÞ¼0:90þlog1−acamax2:53ac−1:09#MedianGroundandslopesRigid50ValueUpperboundUpperboundMeanMeanUpperboundRangeUpperboundUpperboundEarthdamsandembankmentsEarthembankmentsEarthdamsandembankmentsGravityretainingwallsEarthdamsRigidRigidDecoupledRigidDecoupled91799179354Designatedapplication(s)EarthdamsandembankmentsModelRigid183
No.ofrec.41aaNewmark(1965)1ba2a3a4a567bSarma(1975)FranklinandChang(1977)MakdisiandSeed(1978)RichardsandElms(1979)Hynes-GriffinandFranklin(1984)8bMean9MeanGravityretainingwallsRigid17911Yegianetal.(1991)12Brayetal.(1998)amax !Daclog¼0:22−10:12þamaxNeqamaxT2Dac2ac3−11:4816:38amaxamaxaclogðD=ðkmaxD5−95ÞÞ¼1:87−3:477amaxmedianEarthdams,embankments,andslopesRigid86Mean13Watson-LampreyandAbrahamson(2006)MeanlnðDðcmÞÞ¼ð5:470þ0:451ðlnðSaðT¼1sÞÞ−0:45Þþ20:0186ðlnðSaðT¼1sÞÞ−0:45Þþ0:596ðlnðARMSÞ−1:0Þþ20:656ðlnðSaðT¼1sÞ=amaxÞÞþð−0:0716ÞðlnðSaðT¼1sÞ=amaxÞÞþ0:802ðlnðDuracÞ−0:74Þþ0:0763ðlnðDuracÞ−0:74Þþ1ð−0:581Þðlnðamax=acÞþ0:193Þ2Rock-founded,geosynthetic-linedsolid-wastelandfillsEarthslopesDecoupled33Rigid615814BrayandTravasarou(2007)lnðDðcmÞÞ¼−0:22−2:83lnðkcÞ−0:333ðlnðkcÞÞþ20:566lnðkcÞlnðamaxÞþ3:04lnðamaxÞ−0:244ðlnðamaxÞÞþ0:278ðM−7ÞlnðDðcmÞÞ¼−1:10−2:83lnðkcÞ−0:333ðlnðkcÞÞþ0:566lnðkcÞlnðSað1:5TDÞÞþ3:04lnðSað1:5TDÞÞ−20:244ðlnðSað1:5TDÞÞÞþ1:50TDþ0:278ðM−7Þ\"#ac2:341ac−1:438logðDðcmÞÞ¼0:215þlog1−amaxamax\"logðDðcmÞÞ¼−2:710þlog0:424M1−acamax2:335acamax−1:478#22MeanEarthandwasteslopesCoupled(rigid)Coupled(non-rigid)137615Mean16Jibson(2007)MeanNaturalslopesRigid227017þMeanMeanMeanMeanNaturalslopesRigid(scalar)2383181920SaygiliandRathje(2008)log(D(cm))=2.401logIa−3.481logac−3.230log(D(cm))=0.561logIa−3.833log(ac/amax)−1.474acac2þ−20:93lnðDðcmÞÞ¼5:52−4:43amaxamaxac3ac442:61−28:74þ0:72lnðamaxÞamaxamaxacac2þ−20:84lnðDðcmÞÞ¼−1:56−4:58amaxamax34acac44:75−30:5−0:64lnðamaxÞþ1:55lnðvmaxÞamaxamaxv2acD¼245:4maxexp−8:86amaxamax21MeanRigid(vector)22Ebelingetal.(2009)UpperboundRock-foundedstructuresRigid122(continuedonnextpage)184
C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193
Table1(continued)Eq.ModelFunctionalform
23
D¼65:44
v2max
aexp−8:86acmaxamax
aFunctionalformpresentedbyCaiandBathurst(1996).bFunctionalformpresentedbytheauthors.
4.2.Peakhorizontalgroundacceleration(amax)
Takenfromtheoriginalcasehistoryreference,whichisprovidedinSinghetal.(2007).Typically,thesevalueswereestimatedintheirorig-inalreferenceusingavarietyofattenuationrelationships.Inafewofthecases,thepeakgroundaccelerationvaluesweremeasureddirectlyonsite.Thepeakseismiccoefficient,kmax,istheunitlessequivalentofamaxandisdefinedaskmax=amax/g,wheregisthegravitationalacceleration.
4.3.Predominantperiodofearthquakegroundmotion,(Tp)
Takendirectlyfromtheoriginalcasehistoryreference,ifavailable.Otherwise,estimatedfromavailabledatausingthemethodpresentedbyIdriss(1991).
4.4.Fundamental(elastic)periodofdam(TD)
Takendirectlyfromtheoriginalcasehistoryreference,ifavailable.Otherwise,determinedusingtheapproachdescribedbyGazetasandDakoulas(1991)andAndrusandStokoe(2000).4.5.Critical(yield)acceleration(ac)
Calculatedusingapseudo-staticslopestabilityanalysisprocedurethatutilizedBishop'smodifiedmethodforanalyzingcircularfailuresur-faces.Soilparametersnecessaryfortheseanalyses(e.g.,unitweight,co-hesion,andfrictionangle)weretakenfromlaboratoryorfieldtestsresultsiftheywereavailableintheoriginalreference.Otherwise,gener-icsoilpropertieswereused,whichweredeterminedbaseduponmate-rialdescriptionsthatwereprovidedintheoriginalreference(atableofassumedparametersbasedonsoiltypeisprovidedinSinghetal.,2007).Thecriticalcoefficient,kc,istheunitlessequivalentofacandisdefinedaskc=ac/g.
4.6.Resultantobserveddisplacement(D)
Calculatedbytakingthedotproductoftheverticalandhorizontalcomponentsoftheobserveddisplacementvectorandaunitvectoralignedalongtheaverageinclinationofthebaseoftheslidingsurface.Thebaseinclinationanglewasdeterminedfromthecriticalfailurecirclefromthepseudo-staticanalysesthatwereperformed.
Anumberofthesimplifiedslidingblockmodelsthatwereexam-inedinthisstudyrequiretheuseofinputparametersthatarebeyondwhatwasprovidedintheoriginalSinghetal.(2007)database.Theseparametersweredeterminedbytheauthorsofthispaperusingthefollowingmethodology.
4.7.Peakgroundvelocity(vmax),spectralaccelerationwith5%dampingataperiodof1s(Sa(T=1s)),spectralaccelerationwith5%dampingatadegradedperiodof1.5TD(Sa(1.5TD))
Determinedfromearthquakemagnitude(M),thedistancefromtheearthquakesourcetothesite(Distance),andthetime-averagedshearwavevelocityforthetop30minthefoundation(Vs30)usingtheBooreandAtkinson(2008)ground-motionpredictionequations.Vs30valueswereestimatedusingsiteconditiondataprovidedby
ValueDesignatedapplication(s)Model
No.of
rec.
Mean
Singh(2009)inconjunctionwiththegeneralrangeofVs30valuespro-videdbyBooreetal.(1997).
4.8.Rootmeansquareofacceleration(ARMS)andthedurationforwhichtheaccelerationisgreaterthanthecriticalacceleration(Durac)DeterminedusingtheequationsprovidedbyWatson-LampreyandAbrahamson(2006).
5.Relativeaccuracyofsimplifiedslidingblockmodels
Asdescribedpreviously,inordertoassessthepredictivecapabilitiesofthedifferentsimplifiedmodels,itisusefultocomparepredictionsofearthquake-induceddisplacementwiththeactualvaluesthatwereobservedduringseismicevents.Asthecasehistorydatabasethatwasusedforassessmentiscomposedprimarilyofearthdamsandembank-ments,itisnotappropriatetotesttheperformanceofsimplifiedslidingblockmodelsthathavebeendevelopedforotherapplications.Conse-quently,forthisreason,thefollowingmethodsthatarelistedinTable1werenotincludedinthecasehistoryanalysis:RichardsandElms(1979),WhitmanandLiao(1985),Brayetal.(1998),andEbelingetal.(2009)(bothmodels).
AsshowninTable1,BrayandTravasarou(2007)haveproposedtwodifferentsimplifiedslidingblockmodels,oneforapplicationto“rigid”or“nearlyrigid”potentialslidingmasses(thosehavinganinitialfundamentalperiod,TDb0.05s),andtheotherforapplicationtonon-rigidslidingmasses(thosewithTD≥0.05s).Inthedatabaseofcasehistoriesthatwasexamined,allofthecasehistoriescorre-spondtocaseswhereTDisgreaterthan0.05seconds;consequently,BrayandTravasarou's“rigid”slidingmassapproach(Eq.14)wasalsonotincludedinthecasehistoryanalysis.
IntheSinghetal.(2007)database,notenoughinformationisavailabletodetermineAriasintensity(Ia)values(Arias,1970)withanydegreeofconfidenceusingempiricalcorrelations(e.g.,theapproachproposedbyTravasarouetal.,2003).Consequently,thethirdandfourthmodelsproposedbyJibson(2007),Eqs.18and19,cannotbereliablytestedinthiscasehistoryanalysis.Inanycase,asnotedbyJibson(2007),thesemodelshavethetendencytopredictvaluesthatarerelativelyclosetoeachotherforagivengroundmotion,sotheomissionofthesemodelsisnotbelievedtosignificantlyaffecttheconclusionsthatweremadeinthisstudy.
SaygiliandRathje(2008)havealsoproposedtwodifferentsimpli-fiedmethodsforpredictingearthquake-induceddisplacement,onethatusesascalarapproachinthecalculationprocessandonethatusesavectorapproach(i.e.,Eqs.20and21).Followingtheirvectorap-proach,itispossibletouseuptofivedifferentequationswithdifferentcombinationsofinputgroundmotionparameters.Fouroftheseequa-tionsrelyoninputvaluesofeitherAriasintensity(Ia)and/orthemeanperiodofearthquakeacceleration(Tm),whichrequireadditionalassumptionsandcalculationsfromthedatathatisavailableintheSinghetal.(2007)database.Consequently,onlyoneofthevector-basedequa-tionsprovidedbySaygiliandRathje(2008)ispresentedinTable1andisusedinthecasehistoryanalysis(Eq.21).
FifteenofthesimplifiedslidingblockmodelspresentedinTable1areappropriateforusewiththeSinghetal.(2007)database,andconsequentlyweretestedinthecasehistoryanalysis:Eqs.1–5,7,8,10,11,13,15–17,20,and21(Eq.numbersshowninTable1).Eachof
C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193185
Fig.1.Distributionsofearthquakegroundmotionparameters,siteandslopecharacteristicsofinterest,andearthquake-inducedslopedisplacementsthatwereusedinthecasehistoryanalysis.
thesemodelswasdevelopedbaseduponcalibrationorregressionanaly-sisthatwasperformedbytheoriginalauthorsoverarangeofinputpa-rameters.Asaresult,forthemodelsthatweretested,itisnotreasonabletoexpectthattheywouldbeabletomakeaccuratepredic-tionsofslopebehaviorforinputparametersoutsideoftheircalibrationrange.Consequently,forpurposesofthecasehistoryanalysisthatwasperformed,eachmodelwasonlytestedforcasehistoriesthatfallintotheappropriaterangeofmodelinputparameters.Thismeansthatonlyasubsetoftheoriginal122casehistoriesinthedatabasecouldbeusedtoassessthepredictivecapabilitiesofeachmodel.TherangefilteringcriteriathatwasusedandtheassociatednumberofcasehistoriesthatweretestedforeachmodelareprovidedinTable2.
Forthefifteensimplifiedslidingblockmodelsthatweretested,predictionsofearthquake-induceddisplacementweremadeforeachcasehistorywhichsatisfiedtherangefilteringcriteriashowninTable2,usingtheappropriatecasehistoryinputparametersfromthedatabase.Fig.2showstheobservedversuspredicteddisplace-mentsforeachofthesimplifiedslidingblockmodelsthatwasexam-ined.Asshown,withveryfewexceptions,almostallofthecasehistoriesthatwereanalyzedfallabovetheunitylineforeachofthemodels.Notethatallofthepointswhichfallabovetheunityline
correspondtoanunconservativemodelprediction.Thepredictedseis-micdisplacementsforeachcasehistorywerethencomparedwiththeobservedseismicdisplacements,andtherelativeerrorinthemodelpredictionwascalculatedusingEq.(24).Thedifferencebetweentheobservedandpredicteddisplacementsandtherelativeerrorforeachmodeloverallofthecasehistorieswerethenvisualizedusinghisto-gramsandcumulativedistributionfunctions.Inordertoperformside-by-sidecomparisonsoftheresultsfromanumberofmodels(saymorethanthreeorfour),cumulativedistributionfunctionswerefoundtobemoreuseful,astheplotstendtoappearsignificantlylesscluttered.Fig.3showsthecumulativedistributionofthedifferencevalues(Dobserved−Dpredicted)forthesimplifiedslidingblockmodelsthatwereexaminedinthecasehistoryanalysis.Fig.4showsthecumu-lativedistributionofrelativeerrorforthesimplifiedslidingblockmodelsthatwereexamined.RelativeError¼
Dobserved−Dpredicted
x100%
Dobserved
ð24Þ
IntheSinghetal.(2007)database,anumberofthecasehistoriesthatarepresentedcorrespondtoeitherverysmallorverylarge
186C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193
Table2
Casehistoryutilizationforeachsimplifiedslidingblockmethod.Eq(s).
Model(s)
RangeselectionNo.ofcriteriaapplied
casesuseda1,2Newmark(1965)0b(ac/amax)≤1
78,373Sarma(1975)
0.05≤(ac/amax)≤0.9560,354FranklinandChang(1977)0.02≤(ac/amax)≤1.065,375MakdisiandSeed(1978)0.05≤(ac/amax)≤0.957,
32
6.5≤M≤8.25
7,8Hynes-GriffinandFranklin0.01b(ac/amax)b0.643,19(1984)
M≤8
10AmbraseysandMenu(1988)0.05≤(ac/amax)≤0.9527,206.6≤M≤7.2
11Yegianetal.(1991)0.05≤(ac/amax)≤0.946,275.6≤M≤7.713Watson-Lampreyand0.1≤ac≤0.3(g)66,33Abrahamson(2006)
4.5≤M≤7.9
15
BrayandTravasarou(2007)
0.01≤ac≤0.5(g)22,7
4.5≤M≤9.00≤TD≤2(s)
0.002≤Sa(1.5TD)≤2.7(g)Dpredicted>1cm16,17Jibson(2007)(ac/amax)b1.042,29
0.05≤ac≤0.4(g)5.3≤M≤7.6
20,21SaygiliandRathje(2008)0.05≤(ac/amax)≤146,30
0.05≤ac≤0.3(g)4.5≤M≤7.9amax≤1(g)
aNote:Thefirstnumbershowninthiscolumncorrespondstothenumberofcasesthatwereanalyzedafterapplyingtherangefilteringcriteriaonly(e.g.,Figures3and4).Thesecondnumbercorrespondstothenumberofcasesthatwereanalyzedafterapplyingboththerangefilteringcriteriaandthecriteria0.01mbDobservedb1m(e.g.,Figures5and6).
observeddisplacementsafterearthquakeshaking.Itcanbereason-ablyarguedthatthesesmallandlargedisplacementvaluesdonotrepresentrobustcasehistoriesfortestingslidingblockmodels.Inthecaseofsmallobserveddisplacements,say1cmorless(e.g.,theselectioncriteriapresentedbyBrayandTravasarou,2007),theobserveddisplacementsaresmallenoughthattheycanbereasonablyconsideredtobezeroforgeotechnicalapplications.Inthecaseoflargeobserveddisplacements,say1mormore(e.g.,themaximumallowabledisplacementfordamsproposedbyFranklinandChang,1977),thereisanincreasedpossibilitythatthesoilhaslostsignificantstrength,asituationwherenearlyallslidingblockmodelsarenotrecommendedforuse(e.g.,MakdisiandSeed,1978).Additionally,atlargedisplacements,kinematicfactorsrelatedtotheslidinggeometrywillplayanincreasedroleinthedisplacementthatoccurs,furtherincreasingthedifferencebetweenpredictedandobservedresults.
Thevaluesthathavebeenproposedfortheseupperandlowerdisplacementboundariesaresomewhatarbitrary;however,fortherea-sonspreviouslymentioned,theauthorshypothesizethatslidingblockmodelsmayyieldmoreaccuratepredictionsatintermediaterangesofearthquake-induceddisplacement.Toexplorethishypothesis,analysisofthecasehistorieswasrepeatedusingboththerangefilteringcriteriashowninTable2andthecriteria:0.01mbDobservedb1m.ThenumberofcasesthatwereexaminedforeachmodelusingthismorestringentselectioncriterionisshowninTable2.Figs.5and6showthecumula-tivedistributionofthedifferencevaluesandtherelativeerrorforthosecaseswhere0.01mbDobservedb1m,respectively.6.Discussionofresults
Themethodthatwasusedforassessmentofthesimplifiedslidingblockmodelsisacomparisonofpredictedvalueswiththeactualvaluesthatwereobservedduringseismicevents.Consequently,sep-aratecomparisonsshouldbemadeformodelsthatweredeveloped
basedupon“mean”(or“median”)valuepredictionswiththosethatweredevelopedbasedupon“upperbound”predictions.Intheanaly-sesthatwereperformed,thefollowingmodelswerecharacterizedas“upperbound”predictionmodels:Newmark(1965)—Eqs.1aand1b,FranklinandChang(1977)—Eq.4,andHynes-GriffinandFranklin(1984)—Eq.7.Theremainingmodelsthatwereassessedwerechar-acterizedas“mean”(or“median”)valuepredictionmodels.
Byexaminingthecumulativedistributionfunctionsofthediffer-encevaluesandtherelativeerrorforthe“mean”predictionmodels,thefollowingsignificantconclusionscanbedrawn.
Forallofthemodelsthatwereexamined,therelativeerrordistri-butionsaredominatedbypositivepredictionsofrelativeerror.AsshowninFig.4,67%ormoreofthecasesthatwereexaminedfellonthepositivesideofthespectrumforeverymodel.Ifjustoneofthemeanpredictionmodelsisexcluded(Watson-LampreyandAbrahamson,2006),thenumberofcasehistorieswherepositiverelativeerrorwascalculatedincreasesto81%ormoreforallofthemodelsthatwereexamined(Figure4).Ifonlythecaseswhereinter-mediatedisplacementswereobservedareincludedintheanalysis(0.01mbDobservedb1m),74%ormoreofthecasesthatwereexam-inedyieldedpositivevaluesofrelativeerror(Figure6).Theseobser-vationsareofsignificantconcern,aspositivevaluesofrelativeerrorcorrespondtocasehistorieswheretheobservedseismicdisplace-mentwasgreaterthanthepredictedseismicdisplacement—anunconservativemodelprediction.Thereasonforthisunconservativetrendinthemodels'predictionsisnotclear—theauthorshypothe-sizethatitmaybeattributedtooneormoreofthefollowingfactors:(1)somesortofsystematicassumptionsthataremadebytheunder-lyingslidingblockmodelsthatareusedinthesimplifiedmodels'formulations;(2)theinherentinabilityofslidingblockmodelstocapturetheearthquake-inducedvolumetriccompressionthatoccursinanembankmentduringshaking,asnotedbyBrayandTravasarou(2007);and(3)asystematicoccurrenceofsoilstrengthdegradationduringshaking,whichwasnotaccountedforinthesimplifiedslidingblockmodelsthatwereexamined(asthesimplifiedslidingblockmodelsallutilizedaconstantcriticalacceleration).
Forthosecasehistorieswheresignificantmovementoccurred,thedifferencebetweenthepredictedandtheobserveddisplacementswasquitelargeformanyofthemodelsthatweretested.AsshowninFig.3,thepercentageofcasehistorieswhereDobserved−Dpredicted>1mrangedbetween11%(forWatson-LampreyandAbrahamson,2006)to64%(forBrayandTravasarou,2007).Thisobservationissomewhatdis-concerting,asthepossibilityofunderpredictingactualdisplacementsbymorethan1mcouldhavenegativeimplicationsforthedetermina-tionofovertoppingfreeboardforearthdams.Astheoccurrenceoflargedisplacementswasnotwell-predictedformanyofthecaseswhereitoccurred,designersusingthesemethodsshouldbeawareoftherelativepotentialofthedifferentsimplifiedmodelsforsignificantunderpredic-tionofdisplacements.
Asnotedpreviously,itcanbereasonablyarguedthatslidingblockmodels(particularlysimplifiedslidingblockmodels)shouldnotbeusedforcaseswheresignificantsoilstrengthlossorlargeearthquake-induceddisplacementsoccur.Unfortunately,asthedifferencebetweentheobservedandpredicteddisplacementsislargeformanyofthecases,thedesignerwouldnotknowinadvanceofearthquakeshakingifamoresophisticatedanalysismethodwaswarranted.Nevertheless,itisalsoinstructivetolookatthemagnitudeofthedifferencesbetweentheobservedandpredicteddisplacementsforcaseswheretheobserveddisplacementsareinthe“intermediate”range(0.01mbDobservedb1m).AsshowninFig.5,themagnitudeofthedifferencevaluesinthe“inter-mediate”rangeismuchsmallerthanifallofthecasesareconsidered,astheverylargeobserveddisplacementcasesareremovedfromconsider-ation.AsshowninFig.5,the“intermediate”modeldifferencedistribu-tionshavethesamegeneralshapeandtendtofallinthesameapproximaterangeforeachofthemeanvaluepredictionmodelsthatweretested.
C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193187
Fig.2.Observedversuspredicteddisplacementsforthesimplifiedslidingblockmethodswhichwereexaminedinthecasehistoryanalysis.
Ingeneral,bycomparingFigs.3and5,itcanbeobservedthattheshapeofthe“difference”distributionfunctionschangessignificantlyifonlythe“intermediate”rangecasesareconsidered.Thisisnotsurprising,asthelargedisplacementcasesarefilteredoutusingthisap-proach.Incontrast,bycomparingFig.4withFig.6,itcanbeobservedthat,withtheexceptionofWatson-LampreyandAbrahamson(2006),mostoftherelativeerrordistributions'shapesandlocationsdonotchangesignificantlywhenthe“intermediate”displacementfilteringcriteriaisapplied.Thisindicatesthat,forfuturecomparisonsbetweenmodels,itmaynotbenecessarytofiltertheresultsbyobserveddisplacementifthefinalcriterionforcomparisonistherelativeerror.
Byexaminingthecumulativedistributionfunctionsofthediffer-encevaluesandtherelativeerrorforthe“upperbound”predictionmodels,thefollowingsignificantconclusionscanbedrawn.Foreachofthe“upperbound”modelsthatwastested,alargepercentageofthecasesthatwereanalyzeddonotinfactyieldupperboundmodelpredictionsofdisplacement(Figures3–6).ForNewmark's(1965)method,99%ofthecasesanalyzedhavediffer-encevaluesandrelativeerrorvaluesgreaterthanzero,whichmeansthattheobservedvaluesaregreaterthanthepredictedvalues—notatrue“upperbound”prediction.Inasimilarfashion,largenumbersarealsoobservedforFranklinandChang's(1977)method(98%)andHynes-GriffinandFranklin's(1984)method(66%).Theseobservationsareconsistentwiththetendencyformodelunderpredictionthatwasobservedduringanalysisofthe“mean”valuemodelresults.
Ingeneral,withthepossibleexceptionofHynes-GriffinandFranklin's(1984)upperboundmethod,theupperboundmodels
188C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193
Fig.3.Cumulativedistributionofdifferencebetweenpredictedandobserveddisplacementsforeachofthesimplifiedslidingblockmodels(sampledfromallobserveddisplacementcases).
yieldcumulativedistributionfunctionsthatareinthesamerangeasthe“meanvalue”predictionmodels(Figures3–6).
Undoubtedly,theinputparametersofsomeofthecasehistoriesinthedatabasemayhavesomeerrorsduetouncertaintyorassumptionsthatweremadebySinghetal.(2007)ortheoriginalcasehistoryauthors.Theuseofcasehistoriesthatarenotwelldocumentedcanbeconsideredsomewhatundesirable,astherearemanyuncertaintiesintheinputparametersthatcanhaveasignificanteffectonthemodelpredictionresults.Foranumberofthecasehistoriesthatareutilizedherein,theaccelerationatthesitelocationisunknown,andneededtobeestimatedusingattenuationrelationships.Forsomeofthecases,thematerialparametersareunknown,andneededtobeestimatedusingavailabledata.Clearly,thereisanuncertaintyassociatedwiththeuseofattenuationrelationshipsforestimatingthesite-specificgroundmotionparameters,whichcanleadtosignificantuncertaintyinthepredicteddisplacements.Inasimilarfashion,theuseofgenericsoilpropertiesforsomecasehistoriesisalsoundesirable,asitaffectsthecriticalaccelerationthatisusedinthemodels.Forbothoftheseinputparameters(groundmotionsandsoilstrength),smalluncer-taintiesintheinputscanyieldsignificanterrorsontheoutputsideoftheequation.Consequently,theuseofalargecasehistorydatabasethathassomeuncertaintywithitsinputparametersforsomeofitscasehistoriescanbeaneasilycriticizedapproachtosimplifiedslidingblockmodelassessment.Unfortunately,thedatathatwehaveavailableatthistimedoesnotallowforindependentassessmentoftherelativecontributionsof“modelerror”and“inputparametererror”.Takinganotherviewpointhowever,onecanobservethatmanyofthemodelsthatwereusedhereinweredevelopedusingaslidingblockapproachthatnecessitatedasignificantnumberofsimplifyingassumptions.Theseslidingblockmodelswerethensubjectedtoalargedatabaseofbothrecordedandsyntheticgroundmotions,whichyieldedawiderangeandsignificantscatterinthemodelpredic-tionsthatwereusedtodevelopthesimplifiedmodels.Thisentireap-proachtosimplifiedslidingblockmodeldevelopmentissyntheticinnature,whichnecessitatescomparisonwithrealcasehistoriestoassessmodeleffectiveness.Anumberofauthorshavetestedtheirsimplifiedmodelsusingafewwell-documentedcasehistories,andtheresultshavebeeningoodagreement.However,asthewell-documentedcasehistorydatabaseissosmall,testingasimplifiedmodelusingonlyafewdatapointsplacesextensiveemphasisontoofewpointsofobserva-tion.Moreover,evenforwell-documentedcasehistories,therecanbealargeuncertaintyinthemodelinputparameters(e.g.,shearstrength,groundmotions,watertableposition,degradationofsoilstrengthduringshaking,etc.),allofwhichcanhaveasignificanteffectonthemodelresults.
Basically,giventhenatureofthecasehistorydatathatiscurrentlyavailable,therearetwoapproachestosimplifiedslidingblockmodelassessment:(1)useasmallnumberofwell-documentedcasehisto-ries,or(2)useamuchlargerdatabaseofcasehistoriesthatcomprisearangeofuncertaintyintheinputparameters.Areviewofexistingliteratureindicatesthatthefirstapproachhasbeenmuchmorecommonthanthesecond.However,thisapproachtocasehistory
C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193189
Fig.4.Cumulativedistributionofrelativeerrorforeachofthesimplifiedslidingblockmodels(sampledfromallobserveddisplacementcases).
assessmentdisregardsmanyobservationsoffieldbehaviorthatmaybeuseful,simplybecausewedon'thaveasmuchinformationaswewouldlikeformanysites.Italsoplacestoomuchemphasisononlyafewcasehistorieswhereextensivedataisavailable,whichisstatis-ticallyproblematic.
Theapproachutilizedhereinfocusesontheuseofalargercasehistorydatabase.Forassessmentofsimplifiedslidingblockmodels,thismayactuallybeamoreappropriateapproach,asthesemodelswilltypi-callybeusedbypractitionersforsitesthatcomprisearangeofuncertain-tyinmodelinputparameters.Inpractice,formanysites,itisrelativelyuncommontohavesitespecificgroundmotionsorathoroughunder-standingofthesoilshearstrength.Inanycase,ifthesefactorsarewellknown,theuseofmoresophisticatedmodelsthanthoseutilizedhereiniswarranted.Giventhestatisticalnatureofinputparametervariationforsimplifiedmodels,whereparameterswillbeover-estimatedforsomecasehistoriesandunderestimatedinothers,onewouldexpectthatanaccuratesimplifiedslidingblockmodelwouldyieldpredictionstrendingaroundthemeanofobservedfielddisplacementsifalargeenoughcasehistorydatabasewasusedformodelassessment.
Theoverarchingtrendsindistributionbehaviorthatwereobservedforallofthesimplifiedslidingblockmodelsoverallofthecasehistoriesinthedatabasepresentaclearandconsistentpictureofmodelbehaviorinabroadsense.Surprisingly,allofthemodelstendedtounderpredicttheobservedearthquake-induceddisplacements.Thisisanissueofconcernforpracticingengineersthatusethesesimplifiedmodels,especiallyconsideringthattheapproachesthatwerefollowedinthisstudytoestimatemodelinputparametersarebelievedtobegenerallyconsistentwithwhatmightbedonebyengineersinpracticeonsimilarprojectswheremodelinputparametersarenotwellknown.
Asanalternativetodevelopmentofadditionalsimplifiedslidingblockmodels,perhapsitiswarrantedtouseshearstrengthsthathavebeenreducedtoaccountforsoilsofteningduringearthquakeshakingastheinputstosimplifiedslidingblockmodels.Thereduc-tionofshearstrengthtoaccountforstrengthdegradationduringaseismiceventcanbeincorporatedinslidingblockmodelsintwodifferentways:1)usingreducedshearstrengthparametersfortheslopestabilityanalysiswhichisperformedtodeterminethecriticalaccelerationinasimplifiedslidingblockmodelanalysis.Forexample,theuseofresidualratherthanpeakshearstrengthhasbeenrecommendedandadvocatedforseismicstabilityanalysisanddesignofearthstructures(e.g.,Bolton,1981;Jewell,1996;Leshchinsky,2001;LiuandLing,2012);2)usingvariablecriticalaccelerationinaslidingblockmodel,ratherthana“simplified”slidingblockmodel.Since,ingeneral,thecriticalaccelerationistheonlyparameterthatrepresentstheshearstrengthofsoilinsimplifiedslidingblockmodels,utilizingacriticalaccelerationwhichvariesasafunctionofmobilizedseismicdisplacementcanarguablyreflectthestrainsoft-eningphenomenon(e.g.,Matasovicetal.,1997;JibsonandJibson,2003).Forthecasehistoriesthatwereexaminedinthisstudy,eitherofthesesuggestedapproacheswouldyieldhigherpredictionsofdis-placementthatwouldbeinbetteragreementwithobservedfielddisplacements.
Analternativetosimplifiedslidingblockmodelsareregressionequa-tionswhicharedevelopedusingcasehistoriesofobservedearthquake‐
190C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193
Fig.5.Cumulativedistributionofdifferencebetweenpredictedandobserveddisplacementsforeachofthesimplifiedslidingblockmodels(sampledfromthecaseswhere0.01mbDobservedb1m).
induceddisplacements,ratherthansimulatedearthquakedisplacementsthataregeneratedusingsomesortofslidingblockmodel.Usingthisapproach,regressionanalysisisperformedtodeveloparelationshipbetweencharacteristicgroundmotioninputparametersandtheearth-quake‐induceddisplacementsthatareobservedforagiventypeofearthstructure(i.e.,earthdams,naturalslopes,retainingwalls,etc.)overarangeofcasehistories(e.g.,Singhetal.,2007,VahedifardandMeehan,2011).Themainobstacletoeffectivelyutilizethisapproachistherelativelylownumberofwell‐documentedcasehistories.
Asanadditionalsidenote,itisworthmentioningthatslidingblockanalysesprovideco-seismicdisplacementpredictions,whiletheobserveddisplacementsfromcasehistoriescombinedatathatisbothco-seismicandpost-seismic.Thisobservationbringstolighttheimpor-tanceofpost-seismicdisplacementsindesign;forexample,rainfallafteranearthquakemayincreasetheporepressuresontheslipsurface,whichcancauseadditionaldisplacementsduringsmallerafter-shocks.Thisphenomenonisclearlydifferentfromlossofstrengthduringco-seismicmovements(e.g.,SarmaandChlimintzas,2000).Un-fortunately,goodearthquake-inducedembankmentdisplacementdataisdifficulttoobtain,anddatathatdifferentiatesco-seismicandpost-seismicdisplacementsinaclearfashionisquiterare.Totrulyunderstandthesephenomena,moresophisticatedanalysismethodsarewarrantedwithasmallerdatasetofwell-instrumentedcasehisto-ries,priortoextrapolationouttoalarger,more“uncertain”datasetofthetypethatisusedinthecurrentstudy.
7.Summaryandconclusions
SinceNewmark's(1965)introductionoftheslidingblockmethod,numeroussimplifiedslidingblockmodelshavebeenproposed.Thispaperprovidesathoroughreviewofexistingliteraturethatsumma-rizesandorganizesalargenumberofsimplifiedslidingblockmodels,inanattempttomaketheseempiricalequationsmoreaccessibleforusebypracticingengineers.Analyseswerealsoperformedtoevalu-atetherelativeaccuracyofanumberofexistingsimplifiedslidingblockmodelsforpredictingearthquake-induceddisplacementsinearthdamsandembankments.Toaccomplishthistask,thepredictivecapabilityoffifteensimplifiedslidingblockmodelswasassessedbycomparingmodelpredictionswiththeactualdisplacementsthatwereobservedafterearthquakeshakingin122casehistoriesofearthdamsandembankments.Theresultsfromthesecomparisonsindicatethatforallofthesimplifiedslidingblockmodels,themodelpredictionsofdisplacementwerelessthantheobserveddisplace-mentforalargemajorityofthecasehistoriesthatwereexamined.Thisobservationwastrueforboththe“mean”and“upperbound”predictionmodels.Itwasalsotruewhetherornotthecasehistoriesusedintheanalysiswerefilteredtoincludeonlythosecaseswheretheobserveddisplacementswereinthe“intermediate”range(0.01mbDobservedb1m).
Thedifferencebetweentheobservedandpredicteddisplacementswasrelativelylarge(>1m)forasignificantpercentageofthecases,
C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193191
Fig.6.Cumulativedistributionofrelativeerrorforeachofthesimplifiedslidingblockmodels(sampledfromthecaseswhere0.01mbDobservedb1m).
foreachmodelthatwasexamined.Predictionerrorsofthismagnitudecanhaveasignificantconsequencewithrespecttothepost-shakingperformanceofearthdams,anddesignersusingthesemethodsshouldbeawareoftherelativepotentialofthedifferentsimplifiedmodelsforsignificantunderpredictionofdisplacements.
Theshapesandpositionsoftherelativeerrordistributionsforeachmodel,forallofthecasehistoriesthatwereanalyzed,weregenerallysimilartotheshapesandpositionsoftherelativeerrordis-tributionsforthosecaseswheretheobserveddisplacementswereinthe“intermediate”range(0.01mbDobservedb1m).Consequently,themodelsmayexhibitthesamebehaviorforcasesofsmalland/orlargedisplacementastheydoforcasesintheintermediaterange,providedthatapercentage-basedapproachsuchasrelativeerrorisusedtocomparetheresultsfromdifferentmodels.Notationacamaxac/amaxARMSβCDD5-95criticaloryieldacceleration(g)
peakhorizontalgroundacceleration(g)criticalaccelerationratio(unitless)rootmeansquareofacceleration(g)
inclinationofslidingplanetohorizontal(degrees)
aconstantforSarma'smethod(1975)whichisequaltocos(β−θ−ϕ')/cosϕ′(unitless)
resultantobservedseismicdisplacement(m)
timebetween5%and95%oftheAriasintensityofearthquake(s)
durationforwhichtheaccelerationisgreaterthanthecriticalacceleration(s)
ϕ′effectiveshearstrengthparameterofthesoil(°)Hheightofearthdamorembankment(m)IaAriasintensity(m/s)kccriticalcoefficient(kc=ac/g,wheregisthegravitational
acceleration)
kmaxpeakseismiccoefficient(kmax=amax/g)MearthquakemomentmagnitudeNeqequivalentnumberofuniformcycles(Yegianetal.,1991)θinclinationofinertiaforcetohorizontal(degrees)
Sa(1.5TD)spectralaccelerationwith5%dampingatdegradedperiod
equalto1.5TD(g)
Sa(T=1s)spectralaccelerationwith5%dampingat1sec(g)TDinitialfundamentalperiodoftheslope(s)Tmmeanperiodofearthquakeacceleration(s)Tppredominantperiodofearthquakeaccelerationrecord(s)vmaxpeakgroundvelocity(cm/s)Vs30time-averagedshearwavevelocityforthetop30minthe
foundation(m/s)
DuracAcknowledgments
ThismaterialisbaseduponworksupportedbytheNationalScienceFoundationundergrantno.CMMI-0844836.Theauthorswouldliketo
192C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193
thankDr.DebasisRoyandMr.RaghvendraSinghfromIndianInstituteofTechnology,Kharagpurforprovidingthecasehistorydatabasethatwasusedinthemodelevaluation.ThefirstauthorwouldalsoliketoacknowledgethesupportoftheFulbrightCenterinFinlandandthe2012–2013Fulbright-TampereUniversityofTechnologyScholarAward,whichprovidedsupportforworkonthismanuscript.
References
Ambraseys,N.N.,Menu,J.M.,1988.Earthquake-inducedgrounddisplacements.Earthquake
EngineeringandStructuralDynamics16(7),985–1006.
Andrus,R.D.,StokoeII,K.H.,2000.Liquefactionresistanceofsoilsfromshear-wavevelocity.
JournalofGeotechnicalandGeoenviromentalEngineering126,1015–1025.
Arias,A.,1970.Ameasureofearthquakeintensity.In:Hansen,R.J.(Ed.),Proc.Seismic
DesignforNuclearPowerPlants.MITPress,Cambridge,MA,pp.438–483.
Bolton,M.D.,1981.Thestrengthanddilatancyofsands.Geotechnique36(1),39–46.Boore,D.M.,Atkinson,G.M.,2008.Ground-motionpredictionequationsfortheaverage
horizontalcomponentofPGA,PGV,and5%-dampedPSAatspectralperiodsbetween0.01sand10.0s.EarthquakeSpectra24,99–138.
Boore,D.M.,Joyner,W.B.,Fumal,T.E.,1997.Equationsforestimatinghorizontalresponse
spectraandpeakaccelerationfromwesternNorthAmericanearthquakes:asummaryofrecentwork.SeismologicalResearchLetters68,128–153.
Bray,J.D.,2007.Simplifiedseismicslopedisplacementprocedures.In:Pitilakis,K.D.(Ed.),
4thInt.Conf.onEarthq.Geotech.Eng.,InvitedLectures.Springer,pp.327–353.
Bray,J.D.,Rathje,E.M.,1998.Earthquake-induceddisplacementsofsolid-wastefills.
JournalofGeotechnicalandGeoenvironmentalEngineering124(3),242–253.Bray,J.D.,Travasarou,T.,2007.Simplifiedprocedureforestimatingearthquake-induced
deviatoricslopedisplacements.JournalofGeotechnicalandGeoenviromentalEngineering133(4),381–392.
Bray,J.D.,Rathje,E.M.,Augello,A.J.,Merry,S.M.,1998.Simplifiedseismicdesignprocedures
forgeosynthetic-lined,solidwastelandfills.GeosyntheticsInternational5(1–2),203–235.
Cai,Z.,Bathurst,R.J.,1996.Deterministicslidingblockmethodsforestimatingseismic
displacementsofearthstructures.SoilDynamicsandEarthquakeEngineering15,255–268.
Ebeling,R.M.,Fong,M.T.,Yule,D.E.,Chase,A.,Kala,R.V.,2009.Permanentseismically
induceddisplacementofrock-foundedstructurescomputedbytheNewmarkprogram.ERDCTR-09-2.U.S.ArmyCorpsofEngineers,FloodandCoastalStormDamageReductionResearchandDevelopmentProgram.
Franklin,A.G.,Chang,F.K.,1977.Earthquakeresistanceofearthandrockfilldams.Misc.
PaperS-71-17.U.S.ArmyWaterwayExperimentStation,Vicksburg,Miss.
Gazetas,P.,Dakoulas,P.,1991.SeismicanalysisanddesignofRockfilldams.Soil
DynamicsandEarthquakeEngineering11,27–61.
Goodman,R.E.,Seed,H.B.,1965.Displacementsofslopesincohesionlessmaterials
duringearthquakes.Rep.No.H21,Inst.ofTrans.andTrafficEngineering.Univ.ofCalif.,Berkeley,Calif.
Houston,S.L.,Houston,W.N.,Padilla,J.M.,1987.Microcomputer-aidedevaluationof
earthquake-inducedpermanentslopedeformations.MicrocomputersinCivilEngineering2(3),207–222.
Hsieh,S.Y.,Lee,C.T.,2011.EmpiricalestimationoftheNewmarkdisplacementfromthe
Ariasintensityandcriticalacceleration.EngineeringGeology122(1–2),34–42.Huang,C.C.,Wu,S.H.,2006.Simplifiedapproachforassessingseismicdisplacementsof
soilretainingwalls,partI:geosynthetic-reinforcedmodularblockwalls.GeosyntheticsInternational13(6),219–233.
Hynes-Griffin,M.E.,Franklin,A.G.,1984.Rationalizingtheseismiccoefficientmethod.
Misc.PaperGL-84-13.U.S.ArmyWaterwayExperimentStation,Vicksburg,Miss.Idriss,I.M.,1991.Earthquakegroundmotionsatsoftsoilsites.Proc.,2ndInt.Conf.on
RecentAdvancesinGeotech.EarthquakeEngrg.&SoilDyn,pp.2265–2272.
Jewell,R.A.,1996.Soilreinforcementwithgeotextiles,ConstructionIndustryResearch
andInformationAssociation(CIRIA),SpecialPublication123.ThomasTelford,London,UK.(332pp.).
Jibson,R.W.,2007.Regressionmodelsforestimatingcoseismiclandslidedisplacement.
EngineeringGeology91,209–218.
Jibson,R.W.,Jibson,M.W.,2003.JavaprogramsforusingNewmark'smethodand
simplifieddecoupledanalysistomodelslopeperformanceduringearthquakes.USGeologicalSurveyOpen-FileReport03-005,onCD-ROM.
Jibson,R.W.,Harp,E.L.,Michael,J.A.,2000.Amethodforproducingdigitalprobabilistic
seismiclandslidehazardmaps.EngineeringGeology(Amsterdam)58(3-4),271–289.
Kramer,S.L.,Lindwall,L.W.,2004.Dimensionalityanddirectionalityeffectsin
Newmarkslidingblockanalyses.JournalofGeotechnicalandGeoenvironmentalEngineering130(3),303–315.
Kramer,S.L.,Smith,M.W.,1997.ModifiedNewmarkmodelforseismicdisplacements
ofcompliantslopes.JournalofGeotechnicalandGeoenvironmentalEngineering123(7),635–644.
Kutter,B.L.,James,R.G.,1989.Dynamiccentrifugemodeltestsonclayembankments.
Geotechnique39(1),91–106.
Lemos,L.J.L.,Coelho,P.A.L.F.,1991.Displacementsofslopesunderearthquakeloading.
Proc.,2ndInt.Conf.Rec.Adv.inGeotech.EarthquakeEng.andSoilDyn.,St.Louis,Missouri,Vol.II,pp.1051–1056.
Leshchinsky,D.,2001.Designdilemma:usepeakorresidualstrengthofsoil.
GeotextilesandGeomembranes19(2),111–125.
Lin,J.S.,Whitman,R.V.,1983.Decouplingapproximationtotheevaluationofearthquake-inducedplasticslipinearthdams.EarthquakeEngineeringandStructuralDynamics11,667–678.
Lin,J.S.,Whitman,R.V.,1986.Earthquakeinduceddisplacementsofslidingblocks.
JournalofGeotechnicalEngineering112(1),44–59.
Ling,H.,Cheng,A.H.-D.,1997.Rockslidinginducedbyseismicforce.International
JournalofRockMechanicsandMiningSciences34(6),1021–1029.
Ling,H.,Leshchinsky,D.,1998.Effectsofverticalaccelerationonseismicdesignof
geosynthetic-reinforcedsoilstructures.Geotechnique48(3),933–952.
Ling,H.,Leshchinsky,D.,Perry,E.,1997.Seismicdesignandperformanceof
geosynthetic-reinforcedsoilstructures.Geotechnique47(5),933–952.
Liu,H.,Ling,H.I.,2012.Seismicresponsesofreinforcedsoilretainingwallsandthestrain
softeningofbackfillsoils.InternationalJournalofGeomechanics12(4),351–356.Makdisi,F.I.,Seed,H.B.,1978.Simplifiedprocedureforestimatingdamandembank-mentearthquake-induceddeformations.JournalofGeotechnicalEngineering104(7),849–867.
Marcuson,W.F.,1995.Anexampleofprofessionalmodesty.TheEarth,Engineersand
Education.MIT,pp.200–202.
Matasovic,N.,Kavazanjian,E.,Yan,L.,1997.Newmarkdeformationanalysiswith
degradingyieldacceleration.Proc.,Geosyn.’97,LongBeach,Calif,pp.989–1000.Matasovic,N.,Kavazanjian,E.,Giroud,J.P.,1998.Newmarkseismicdeformationanalysis
forgeosyntheticcovers.GeosyntheticsInternational5(1–2),237–264.
Meehan,C.L.,Boulanger,R.W.,Duncan,J.M.,2008.Dynamiccentrifugetestingof
slickensidedshearsurfaces.JournalofGeotechnicalandGeoenviromentalEngineering134(8),1086–1096.
Mendez,B.C.,Botero,E.,Romo,M.P.,2009.Anewfrictionlawforslidingrigidblocks
undercyclicloading.SoilDynamicsandEarthquakeEngineering29,874–882.Miles,S.B.,Keefer,D.K.,2000.Evaluationofseismicslope–performancemodelsusinga
regionalcasestudy.EnvironmentalandEngineeringGeoscience6(1),25–39.Newmark,N.M.,1965.Effectsofearthquakesondamsandembankments.Geotechnique
15(2),139–160.
Nguyen,V.B.,Jiang,J.-C.,Yamagami,T.,2005.ModifiedNewmarkanalysisofseismic
permanentdisplacementsofslopes.Landslides41(5),458–466.
Paulsen,S.B.,Kramer,S.L.,2004.Apredictivemodelforseismicdisplacementof
reinforcedslopes.GeosyntheticsInternational11(6),407–428.
Rathje,E.M.,Antonakos,G.,2011.Aunifiedmodelforpredictingearthquake-inducedsliding
displacementsofrigidandflexibleslopes.EngineeringGeology122(1–2),51–60.
Rathje,E.M.,Bray,J.D.,2000.Nonlinearcoupledseismicslidinganalysisofearthstruc-tures.JournalofGeotechnicalandGeoenvironmentalEngineering126(11),1002–1014.
Rathje,E.M.,Saygili,G.,2008.Probabilisticseismichazardanalysisforthesliding
displacementofslopes:Scalarandvectorapproaches.JournalofGeotechnicalandGeoenvironmentalEngineering134(6),804–814.
Rathje,E.M.,Saygili,G.,2011.Estimatingfullyprobabilisticseismicslidingdisplacements
ofslopesfromapseudoprobabilisticapproach.JournalofGeotechnicalandGeoenvironmentalEngineering137(3),208–217.
Richards,R.,Elms,D.G.,1979.Seismicbehaviorofgravityretainingwalls.Journalofthe
GeotechnicalEngineeringDivision,ASCE105(GT4),449–464.
Sarma,S.K.,1973.Stabilityanalysisofembankmentsandslopes.Geotechnique23(3),
423–433.
Sarma,S.K.,1975.Seismicstabilityofearthdamsandembankments.Geotechnique25
(4),743–761.
Sarma,S.K.,Chlimintzas,G.,2000.Co-seismicandpostseismicdisplacementsofslopes.
Proc.,15thInt.Conf.SoilMechanicsandGeotechnicalEngineering(ICSMGE),LessonsLearnedfromRecentStrongEarthquakes,EarthquakeGeotechnicalEngineeringSatelliteConference,Istanbul,Turkey,pp.183–188.
Sawicki,A.,Chybicki,W.,Kulczykowski,M.,2007.Influenceofverticalgroundmotionon
seismic-induceddisplacementsofgravitystructures.ComputersandGeotechnics34,485–497.
Saygili,G.,Rathje,E.M.,2008.Empiricalpredictive,modelsforearthquake-induced
slidingdisplacementsofslopes.JournalofGeotechnicalandGeoenviromentalEngineering134(6),790–803.
Saygili,G.,Rathje,E.M.,2009.Probabilisticallybasedseismiclandslidehazardmaps:an
applicationinSouthernCalifornia.EngineeringGeology109,183–194.Singh,R.,2009.Personalcommunication,September24,2009.
Singh,R.,Roy,D.,Das,D.,2007.Acorrelationforpermanentearthquake-induceddeforma-tionofearthembankments.EngineeringGeology90,174–185.
Strenk,P.M.,Wartman,J.,2011.Uncertaintyinseismicslopedeformationmodel
predictions.EngineeringGeology122(1–2),61–72.
Taylor,D.W.,1953.LetterstoSouthPacificDivision.UnitedStatesArmyCorpsof
Engineers,SanFrancisco.(14AprilandMay20).
Tika-Vassilikos,T.E.,Sarma,S.K.,Ambraseys,N.N.,1993.Seismicdisplacementonshear
surfacesincohesivesoils.EarthquakeEngineeringandStructuralDynamics22,709–721.
Trandafir,A.C.,Kamai,T.,Sidle,R.C.,2009.Earthquake-induceddisplacementsofgravity
retainingwallsandanchor-reinforcedslopes.SoilDynamicsandEarthquakeEngineering29,428–437.
Travasarou,T.,Bray,J.D.,Abrahamson,N.A.,2003.Empiricalattenuationrelationship
forAriasIntensity.EarthquakeEngineeringandStructuralDynamics32(7),1133–1155.
Vahedifard,F.,2011.Seismicdisplacementofunreinforcedandreinforcedearthstructures.
DoctoralDissertation.DepartmentofCivilandEnvironmentalEngineering,UniversityofDelaware,Newark,DE.
Vahedifard,F.,Meehan,C.L.,2011.Amulti-parametercorrelationforpredictingthe
seismicdisplacementofanearthdamorembankment.GeotechnicalandGeologi-calEngineering29(6),1023–1034.
C.L.Meehan,F.Vahedifard/EngineeringGeology152(2013)180–193
Wartman,J.,Strenk,P.M.,2006.Earthquakephysicsevaluationofanalyticalprocedures
forestimatingseismicallyinducedpermanentdeformationsinslopes.UCGSResearchReportNo.06HQGR0010,p.29.
Wartman,J.,Bray,J.D.,Seed,R.B.,2003.InclinedplanestudiesoftheNewmarksliding
blockprocedure.JournalofGeotechnicalandGeoenviromentalEngineering129(8),673–684.
Watson-Lamprey,J.,Abrahamson,N.,2006.Selectionofgroundmotiontimeseriesand
limitsonscaling.SoilDynamicsandEarthquakeEngineering26(5),477–482.Whitman,R.V.,Liao,S.,1985.Seismicdesignofretainingwalls.Misc.PaperGL-85-1.
U.S.ArmyWaterwayExperimentStation,Vicksburg,Miss.
Wilson,R.C.,Keefer,D.K.,1983.Dynamicanalysisofaslopefailurefromthe6August
1979CoyoteLake,California,earthquake.BulletinoftheSeismologicalSocietyofAmerica73,863–877.
193
Yan,L.,1991.Seismicdeformationanalysesofearthdams:Asimplifiedmethod.Soil
Mech.Lab.Rep.No.SML91-01.Cal.Inst.ofTech.
Yan,L.,Matasovic,N.,Kavazanjian,E.,1996.Seismicresponseofrigidblockoninclined
planetoverticalandhorizontalgroundmotionsactingsimultaneously.In:Lin,Y.K.,Su,T.C.(Eds.),Proc.11thASCEEngineeringMechanicsConf.,Vol.2.FortLauderdale,Florida,USA,ASCE,NewYork,pp.1110–1113.
Yegian,M.K.,Marciano,E.A.,Ghahraman,V.G.,1991.Earthquake-inducedpermanent
deformations:probabilisticapproach.JournalofGeotechnicalEngineering117(1),35–50.
因篇幅问题不能全部显示,请点此查看更多更全内容